
PROBLEM SUMMARY

Sample Rating Trend VISUAL METAL

Machine Id 11565247 CRUSHER TOGGLE

Hydraulic System Fluid SHELL TELLUS 68 (3470 LTR)

COMPONENT CONDITION SUMMARY

RECOMMENDATION

Check seals and/or filters for points of contaminant entry. We advise that you check for visible metal particles in the oil. Wear particles and/or ppm levels are abnormally high indicating the need to review OEM limits with attention to components that may generate this type of wear. Include all test results and maintenance activities that have been performed since the abnormal condition was first detected in this review. The air breather requires service. If unrated, we recommend that you replace with a suitable micron rated and/or desiccant air breather. If rated, we recommend that you service/replace the breather. We recommend you service the filters on this component. An inspection for the source(s) of wear may be warranted at this time. Re-sampling is suggested to confirm test results prior to significant maintenance activities being performed. Please indicate that this is a resample on your Sample Information Form (SIF). Resample in 30-45 days to monitor this situation.

Customer Id: INCOCOLE Sample No.: WC0811773 Lab Number: 02624780 Test Package: IND 2

To manage this report scan the QR code

To discuss the diagnosis or test data: Kevin Marson +1 (289)291-4644 x4644 Kevin.Marson@wearcheck.com

To change component or sample information: Gloria Gonzalez +1 (289)291-4643 x4643 <u>gloria.gonzalez@wearcheck.com</u>

PROBLEMATIC TEST RESULTS

THOBEENINTIOT	201112	00210				
Sample Status				SEVERE	ABNORMAL	NORMAL
Particles >4µm		ASTM D7647	>5000	A 79226	1 9210	2002
Particles >6µm		ASTM D7647	>1300	<u> </u>	<u> </u>	559
Particles >14µm		ASTM D7647	>160	<u> </u>	▲ 892	66
Oil Cleanliness		ISO 4406 (c)	>19/17/14	4 23/20/16	🔺 21/20/17	18/16/13
White Metal	scalar	Visual*	NONE	LTMOD	NONE	NONE
				·		

no image

no image

PrtFilter

RECOMMENDED ACTIONS							
Action	Status	Date	Done By	Description			
Inspect Wear Source			?	An inspection for the source(s) of wear may be warranted at this time.			
Monitor			?	Wear particles and/or ppm levels are abnormally high indicating the need to review OEM limits with attention to components that may generate this type of wear. Include all test results and maintenance activities that have been performed since the abnormal condition was first detected in this review.			
Change Filter			?	We recommend you service the filters on this component.			
Resample			?	Resample in 30-45 days to monitor this situation. Re-sampling is suggested to confirm test results prior to significant maintenance activities being performed. Please indicate that this is a resample on your Sample Information Form (SIF).			
Alert			?	Wear particles and/or ppm levels are abnormally high indicating the need to review OEM limits with attention to components that may generate this type of wear. Include all test results and maintenance activities that have been performed since the abnormal condition was first detected in this review.			
Check Breathers			?	The air breather requires service. If unrated, we recommend that you replace with a suitable micron rated and/or desiccant air breather. If rated, we recommend that you service/replace the breather.			
Check For Visual Metal			?	We advise that you check for visible metal particles in the oil.			
Check Seals			?	Check seals and/or filters for points of contaminant entry.			

HISTORICAL DIAGNOSIS

11 Oct 2023 Diag: Wes Davis

We advise that you perform a filter service, and use off-line filtration to improve the cleanliness of the system fluid. We recommend an early resample to monitor this condition.All component wear rates are normal. There is a moderate amount of particulates (2 to 100 microns in size) present in the oil. The AN level is acceptable for this fluid. The oil is still serviceable provided that the contaminant(s) can be reduced to acceptable levels.

view report

13 Sep 2023 Diag: Wes Davis

NORMAL

Resample at the next service interval to monitor.All component wear rates are normal. The system cleanliness is acceptable for your target ISO 4406 cleanliness code. The system and fluid cleanliness is acceptable. The AN level is acceptable for this fluid. The condition of the oil is suitable for further service.

We advise that you check all areas where contaminants can enter the system. We advise that you perform a filter service, and use off-line filtration to improve the cleanliness of the system fluid. The air breather requires service. If unrated, we recommend that you replace with a suitable micron rated and/or desiccant air breather. If rated, we recommend that you service/replace the breather. Confirm the source of the lubricant being utilized for top-up/fill. Resample in 30-45 days to monitor this situation.All component wear rates are normal. There is a high amount of particulates (2 to 100 microns in size) present in the oil. Additive levels indicate the addition of a different brand, or type of oil. The AN level is acceptable for this fluid. The oil is still serviceable provided that the contaminant(s) can be reduced to acceptable levels.

OIL ANALYSIS REPORT

Machine Ic 11565247 CRUSHER TOGGLE Component

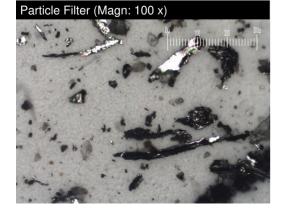
Hydraulic System SHELL TELLUS 68 (3470 LTR)

DIAGNOSIS

Recommendation

Check seals and/or filters for points of contaminant entry. We advise that you check for visible metal particles in the oil. Wear particles and/or ppm levels are abnormally high indicating the need to review OEM limits with attention to components that may generate this type of wear. Include all test results and maintenance activities that have been performed since the abnormal condition was first detected in this review. The air breather requires service. If unrated, we recommend that you replace with a suitable micron rated and/or desiccant air breather. If rated, we recommend that you service/replace the breather. We recommend you service the filters on this component. An inspection for the source(s) of wear may be warranted at this time. Re-sampling is suggested to confirm test results prior to significant maintenance activities being performed. Please indicate that this is a resample on your Sample Information Form (SIF). Resample in 30-45 days to monitor this situation.

A Wear

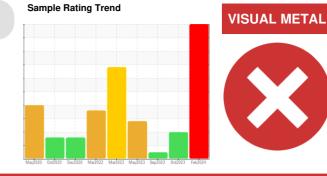

Moderate concentration of visible metal present.

Contamination

There is a high amount of silt (particulates < 14 microns in size) present in the oil.

Fluid Condition

The AN level is acceptable for this fluid. The oil is still serviceable provided that the contaminant(s) can be reduced to acceptable levels.



Report Id: INCOCOLE [WCAMIS] 02624780 (Generated: 03/27/2024 13:20:11) Rev: 1

Particles >38µm

Particles >71µm

Oil Cleanliness

SAMPLE INFORM	MATION	method	limit/base	current	history1	history2
Sample Number		Client Info		WC0811773	WC0811802	WC0754994
Sample Date		Client Info		29 Feb 2024	11 Oct 2023	13 Sep 2023
Machine Age	mths	Client Info		0	0	0
Oil Age	mths	Client Info		0	0	0
Oil Changed		Client Info		N/A	Not Changd	N/A
Sample Status				SEVERE	ABNORMAL	NORMAL
CONTAMINATIO	N	method	limit/base	current	history1	history2
Water		WC Method	>0.05	NEG	NEG	NEG
WEAR METALS		method	limit/base	current	history1	history2
Iron	ppm	ASTM D5185(m)	>20	13	7	0
Chromium	ppm	ASTM D5185(m)	>20	4	1	0
Nickel	ppm	ASTM D5185(m)	>20	0	<1	<1
Titanium	ppm	ASTM D5185(m)		0	0	0
Silver	ppm	ASTM D5185(m)		0	<1	<1
Aluminum	ppm	ASTM D5185(m)	>20	<1	<1	0
Lead	ppm	ASTM D5185(m)	>20	0	2	0
Copper	ppm	ASTM D5185(m)	>20	3	4	<1
Tin	ppm	ASTM D5185(m)	>20	0	0	0
Antimony	ppm	ASTM D5185(m)		0	0	0
Vanadium	ppm	ASTM D5185(m)		0	0	0
Beryllium	ppm	ASTM D5185(m)		0	0	0
Cadmium	ppm	ASTM D5185(m)		0	0	0
ADDITIVES		method	limit/base	current	history1	history2
Boron	ppm	ASTM D5185(m)		<1	3	<1
Barium	ppm	ASTM D5185(m)		0	<1	0
Molybdenum	ppm	ASTM D5185(m)		0	0	0
Manganese	ppm	ASTM D5185(m)		0	0	0
Magnesium	ppm	ASTM D5185(m)	11	63	75	69
Calcium	ppm	ASTM D5185(m)	39	12	15	9
Phosphorus	ppm	ASTM D5185(m)	260	277	320	283
Zinc	ppm	ASTM D5185(m)	279	346	389	350
Sulfur	ppm	ASTM D5185(m)	2109	646	772	662
Lithium	ppm	ASTM D5185(m)		<1	<1	<1
CONTAMINANTS	3	method	limit/base	current	history1	history2
Silicon	ppm	ASTM D5185(m)	>15	0	<1	0
Sodium	ppm	ASTM D5185(m)		<1	<1	<1
Potassium	ppm	ASTM D5185(m)	>20	<1	0	20
FLUID CLEANLIN	IESS	method	limit/base	current	history1	history2
Particles >4µm		ASTM D7647	>5000	4 79226	1 9210	2002
Particles >6µm		ASTM D7647	>1300	<u> </u>	▲ 5983	559
Particles >14µm		ASTM D7647	>160	404	▲ 892	66
Particles >21µm		ASTM D7647	>40	6 59	A 223	14
D 11 1 00			10		-	

ASTM D7647 >10

ASTM D7647 >3

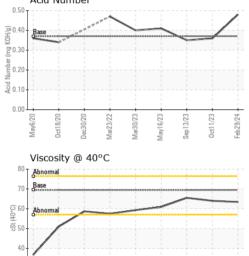
ISO 4406 (c) >19/17/14 **23/20/16** ▲ 21/20/17 18/16/13 Contact/Location: Ryan Davies - INCOCOLE

8

1

1

0


0

0

OIL ANALYSIS REPORT

	ticle Cour	nt			
491,520					T ²⁶
122,880 Severe					-24
30,720					+22 (\$0 4406:1999 Cleanliness Code +16 -14 -12 Scode +12 -12 -10 -14 -112 -110 -110 -110 -110 -110 -110 -110
7,680 Abnor	nal				20 8
1,920-		< - ·			-18 199
480-		1			16 👷
120-					14 1
30-			/		-12 🖁
8 -			```		-10 8
2-					-8
0. 4µ	6µ	14µ	21µ	38µ	71µ
T20k - 100k - 10	4μm 6μm 14μm		~		/
UK		22 -	23	23	23
May6/20	Oct18/20 Dec30/20	Mar23/22	Mar30/23 May16/23	Sep 13/23	Oct11/23 Feb29/24
2	De	M	M M	Se	Per o
Aci	d Numbei	r			
0.00					

Mar23/22

Dec30/20

May16/23

Mar30/23

31

May6/20 Dct18/20

FLUID DEGRADA	ATION	method	limit/base	current	history1	history2
Acid Number (AN)	mg KOH/g	ASTM D974*	0.37	0.48	0.36	0.35
VISUAL		method	limit/base	current	history1	history2
White Metal	scalar	Visual*	NONE	LTMOD	NONE	NONE
Yellow Metal	scalar	Visual*	NONE	NONE	NONE	NONE
Precipitate	scalar	Visual*	NONE	NONE	NONE	NONE
Silt	scalar	Visual*	NONE	NONE	NONE	NONE
Debris	scalar	Visual*	NONE	NONE	NONE	NONE
Sand/Dirt	scalar	Visual*	NONE	NONE	NONE	NONE
Appearance	scalar	Visual*	NORML	NORML	NORML	NORML
Odor	scalar	Visual*	NORML	NORML	NORML	NORML
Emulsified Water	scalar	Visual*	>0.05	NEG	NEG	NEG
Free Water	scalar	Visual*		NEG	NEG	NEG
FLUID PROPERT	IES	method	limit/base	current	history1	history2
Visc @ 40°C	cSt	ASTM D7279(m)	69.43	63.4	64.0	65.5
SAMPLE IMAGES	S	method	limit/base	current	history1	history2
Color					1802	

Bottom

PrtFilter

0ct11/23 -

Sep13/23

Feb29/24

: WearCheck - C8-1175 Appleby Line, Burlington, ON L7L 5H9 Vale - Coleman Mine Laboratory CALA Sample No. : WC0811773 Received : 26 Mar 2024 COLEMAN MINE (PLANT 10), 117 Mine Road Lab Number : 02624780 Tested : 27 Mar 2024 LEVACK, ON ISO 17025:2017 Accredited Laboratory Unique Number : 5749899 Diagnosed : 27 Mar 2024 - Kevin Marson CA POM 2C0 Test Package : IND 2 (Additional Tests: Bottom, BottomAnalysis, FilterPatch, PrtFilter, TAN MarContact: Ryan Davies To discuss this sample report, contact Customer Service at 1-800-268-2131. ryan.davies@vale.com Test denoted (*) outside scope of accreditation, (m) method modified, (e) tested at external lab. T: (705)682-8952 Validity of results and interpretation are based on the sample and information as supplied. F: (705)966-4114