

OIL ANALYSIS REPORT

Sample Rating Trend

BD SHOP 200304 Component Diesel Engine

PETRO CANADA DURON SHP 10W30 (40 LTR)

DIAGNOSIS

Recommendation

Resample at the next service interval to monitor.

Area

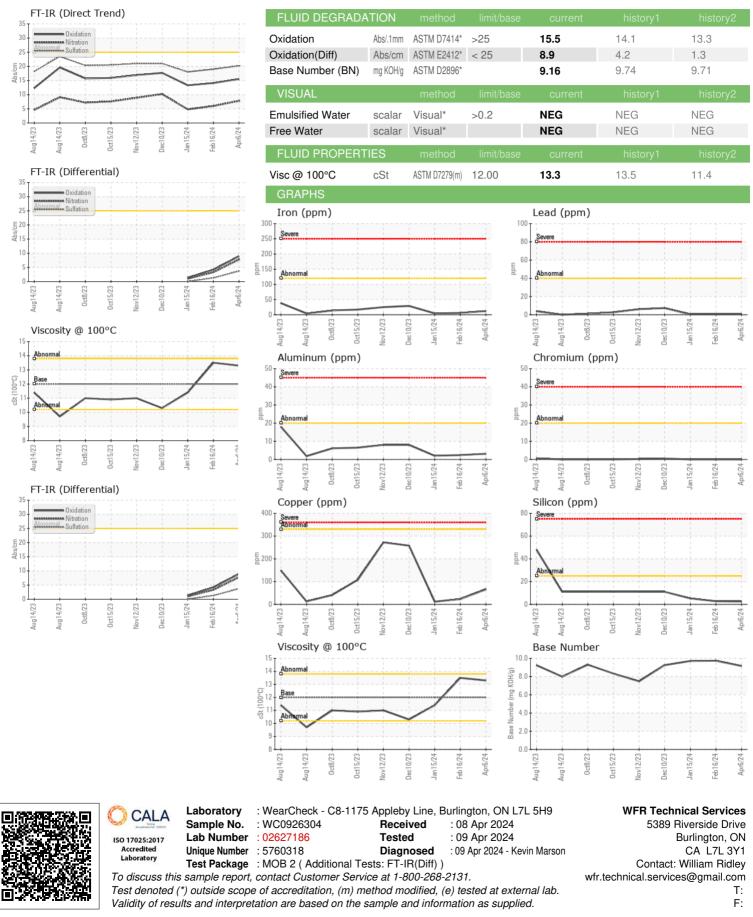
Wear

All component wear rates are normal.

Contamination

Elevated aluminum (Al) and/or lead (Pb) and potassium (K) levels in your metals analysis are likely a result of solder flux release into the lubricant and is common on new equipment/components. There is no indication of any contamination in the oil.

Fluid Condition


The BN result indicates that there is suitable alkalinity remaining in the oil. The condition of the oil is suitable for further service.

SAMPLE INFORM	1ATION	method	limit/base	current	history1	history2
Sample Number		Client Info		WC0926304	WC0888879	WC0888890
Sample Date		Client Info		06 Apr 2024	16 Feb 2024	15 Jan 2024
Machine Age	kms	Client Info		135217	118110	102918
Oil Age	kms	Client Info		32299	15192	1
Oil Changed		Client Info		Not Changd	Not Changd	Changed
Sample Status				NORMAL	NORMAL	NORMAL
CONTAMINATION	١	method	limit/base	current	history1	history2
Fuel		WC Method	>3.0	<1.0	<1.0	<1.0
Water		WC Method	>0.2	NEG	NEG	NEG
Glycol		WC Method		NEG	NEG	NEG
WEAR METALS		method	limit/base	current	history1	history2
Iron	ppm	ASTM D5185(m)	>120	12	6	4
Chromium	ppm	ASTM D5185(m)	>20	0	0	0
Nickel	ppm	ASTM D5185(m)	>5	2	1	<1
Titanium	ppm	ASTM D5185(m)	>2	0	0	0
Silver	ppm	ASTM D5185(m)	>2	0	<1	0
Aluminum	ppm	ASTM D5185(m)	>20	3	2	2
Lead	ppm	ASTM D5185(m)	>40	<1	<1	<1
Copper	ppm	ASTM D5185(m)	>330	66	23	12
Tin	ppm	ASTM D5185(m)	>15	<1	<1	0
Antimony	ppm	ASTM D5185(m)		0	0	0
Vanadium	ppm	ASTM D5185(m)		0	0	0
Beryllium	ppm	ASTM D5185(m)		0	0	0
Cadmium	ppm	ASTM D5185(m)		0	0	0
ADDITIVES		method	limit/base	current	history1	history2
Boron	ppm	ASTM D5185(m)	2	2	2	7
Barium	ppm	ASTM D5185(m)	0	0	0	0
Molybdenum	ppm	ASTM D5185(m)	50	60	58	57
Manganese	ppm	ASTM D5185(m)	0	0	0	0
Magnesium	ppm	ASTM D5185(m)	950	980	949	924
Calcium	ppm	ASTM D5185(m)	1050	1043	1057	1018
Phosphorus	ppm	ASTM D5185(m)	995	965	997	971
Zinc	ppm	ASTM D5185(m)	1180	1173	1154	1116
Sulfur	ppm	ASTM D5185(m)	2600	2336	2703	2659
Lithium	ppm	ASTM D5185(m)		<1	<1	<1
CONTAMINANTS		method	limit/base	current	history1	history2
Silicon	ppm	ASTM D5185(m)	>25	2	3	5
Sodium	ppm	ASTM D5185(m)		1	1	<1
Potassium	ppm	ASTM D5185(m)	>20	6	4	3
INFRA-RED		method	limit/base	current	history1	history2
Soot %	%	ASTM D7844*	>4	0.2	0.1	0
Nitration	Abs/cm	ASTM D7624*	>20	7.8	6.0	4.8
Nitration(Diff)	Abs/cm	ASTM E2412*	< 25	7.8	3.3	1
Sulfation	Abs/.1mm	ASTM D7415*	>30	20.2	19.0	18.0
Sulfation(Diff)	Abs/cm	ASTM E2412*		3.7	1.3	0
9:45:20) Rev: 1					Submitted By	: William Ridley

Report Id: WFRBUR [WCAMIS] 02627186 (Generated: 04/09/2024 09:45:20) Rev: 1

OIL ANALYSIS REPORT

Report Id: WFRBUR [WCAMIS] 02627186 (Generated: 04/09/2024 09:45:20) Rev: 1

Submitted By: William Ridley Page 2 of 2