

OIL ANALYSIS REPORT

SAMPLE INFORMATION method

Sample Rating Trend

Machine Id

B06G4 LARGE BORE

Hydraulic System Fluid ESSO TERESSO ISO 32 (--- GAL)

DIAGNOSIS

Recommendation

Confirm the source of the lubricant being utilized for top-up/fill. Resample at the next service interval to monitor. NOTE: Please provide information regarding reservoir capacity, filter type and micron rating with next sample.

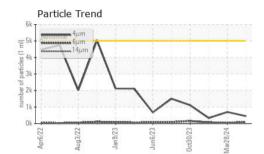
Wear

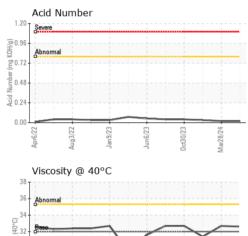
All component wear rates are normal.

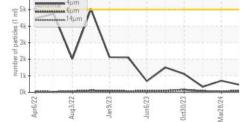
Contamination

The system cleanliness is acceptable for your target ISO 4406 cleanliness code. The system and fluid cleanliness is acceptable.

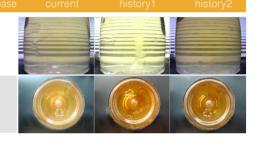
Fluid Condition


Additive levels indicate the addition of a different brand, or type of oil. The AN level is acceptable for this fluid. The condition of the oil is suitable for further service.

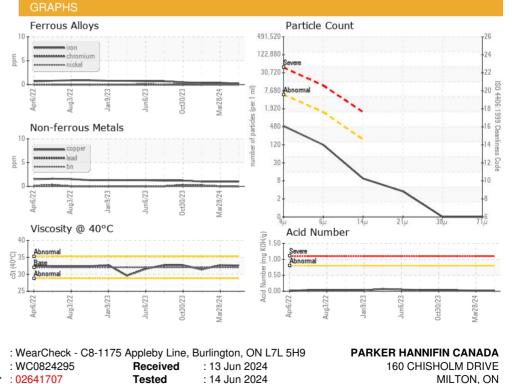

SAMPLE INFORM		method	limit/base	current	history1	history2
Sample Number		Client Info		WC0824295	WC0730289	WC0730288
Sample Date		Client Info		03 Jun 2024	28 Mar 2024	08 Jan 2024
Machine Age	mths	Client Info		0	0	0
Oil Age	mths	Client Info		0	0	0
Oil Changed		Client Info		N/A	N/A	N/A
Sample Status				ATTENTION	ATTENTION	ATTENTION
CONTAMINATIO	N	method	limit/base	current	history1	history2
Water		WC Method	>0.05	NEG	NEG	NEG
WEAR METALS		method	limit/base	current	history1	history2
Iron	ppm	ASTM D5185(m)	>20	<1	<1	<1
Chromium	ppm	ASTM D5185(m)		0	0	0
Nickel	ppm	ASTM D5185(m)	>20	0	0	<1
Titanium	ppm	ASTM D5185(m)	0	0	0	0
Silver	ppm	ASTM D5185(m)		0	0	0
Aluminum	ppm	ASTM D5185(m)	>20	<1	0	<1
Lead	ppm	ASTM D5185(m)	>20	0	0	<1
Copper	ppm	ASTM D5185(m)		1	1	1
Tin		ASTM D5185(m)	>20	0	0	0
Antimony	ppm ppm	ASTM D5185(m)	220	0	0	0
Vanadium		ASTM D5185(m) ASTM D5185(m)		0	0	0
	ppm			0	0	0
Beryllium	ppm	ASTM D5185(m)				
	ppm	ASTM D5185(m)	11 1. 11	0	0	0
ADDITIVES		method	limit/base	current	history1	history2
Boron	ppm	ASTM D5185(m)		0	0	0
Barium	ppm	ASTM D5185(m)		<1	<1	0
Molybdenum	ppm	ASTM D5185(m)		0	0	0
Manganese	ppm	ASTM D5185(m)		0	0	0
Magnesium	ppm	ASTM D5185(m)		<1	<1	0
Calcium	ppm	ASTM D5185(m)		5	6	5
Phosphorus	ppm	ASTM D5185(m)		<mark> </mark> 71	71	71
Zinc	ppm	ASTM D5185(m)		19	20	19
Sulfur	ppm	ASTM D5185(m)		<mark> </mark> 2990	2884	3187
Lithium	ppm	ASTM D5185(m)		<1	<1	<1
CONTAMINANTS	5	method	limit/base	current	history1	history2
Silicon	ppm	ASTM D5185(m)	>15	0	0	<1
Sodium	ppm	ASTM D5185(m)		<1	<1	<1
Potassium	ppm	ASTM D5185(m)	>20	0	<1	<1
FLUID CLEANLIN	IESS	method	limit/base	current	history1	history2
Particles >4µm		ASTM D7647	>5000	450	702	328
Particles >6µm		ASTM D7647	>1300	106	41	80
Particles >14µm		ASTM D7647	>160	8	7	8
Particles >21µm		ASTM D7647	>40	3	2	3
Particles >38µm		ASTM D7647	>10	0	1	1
Particles >71µm		ASTM D7647	>3	0	0	1
Oil Cleanliness 59:23) Rev: 1		ISO 4406 (c)	>19/17/14 C	16/14/10 Contact/Locatior	17/13/10 : Aurelio Romar	16/13/10 10 - PAR160MI
-,						Page 1 of 2


OIL ANALYSIS REPORT

	itives				
100	calcium phosphon	us			
E 100	Personal ZINC				
50			a bill about the local data	a a subsection in the state of	



28					
26	22	23	23 -	23	24 -
Apr6/	Aug3//	Jan9/	Jun6/	0ct30/	/lar28/



FLUID DEGRADATION						
Acid Number (AN)	mg KOH/g	ASTM D974*		0.02	0.02	0.03
VISUAL		method	limit/base	current	history1	history2
White Metal	scalar	Visual*	NONE	NONE	NONE	NONE
Yellow Metal	scalar	Visual*	NONE	NONE	NONE	NONE
Precipitate	scalar	Visual*	NONE	NONE	NONE	NONE
Silt	scalar	Visual*	NONE	NONE	NONE	NONE
Debris	scalar	Visual*	NONE	NONE	NONE	NONE
Sand/Dirt	scalar	Visual*	NONE	NONE	NONE	NONE
Appearance	scalar	Visual*	NORML	NORML	NORML	NORML
Odor	scalar	Visual*	NORML	NORML	NORML	NORML
Emulsified Water	scalar	Visual*	>0.05	NEG	NEG	NEG
Free Water	scalar	Visual*		NEG	NEG	NEG
FLUID PROPERT	IES	method	limit/base	current	history1	history2
Visc @ 40°C	cSt	ASTM D7279(m)	32	32.6	32.7	31.4

Color

Bottom

: 14 Jun 2024 - Kevin Marson

CALA Sample No. Lab Number : 02641707 ISO 17025:2017 Accredited Laboratory Unique Number : 5799246 Test Package : IND 2

Laboratory

To discuss this sample report, contact Customer Service at 1-800-268-2131. Test denoted (*) outside scope of accreditation, (m) method modified, (e) tested at external lab. Validity of results and interpretation are based on the sample and information as supplied.

Diagnosed

MILTON, ON CA L9T 3G9

Contact: Aurelio Romano aurelio.romano@parker.com T: (416)432-8153 F:

Report Id: PAR160MIL [WCAMIS] 02641707 (Generated: 06/14/2024 11:59:23) Rev: 1

Contact/Location: Aurelio Romano - PAR160MIL