

PROBLEM SUMMARY

Area BRUCE B/0B/54600 0B-54600-SG8-Avon Level Gauge

Jet Turbine Fluid SHELL AEROSHELL 500 (--- GAL)

COMPONENT CONDITION SUMMARY

RECOMMENDATION

We recommend either performing an oil change or oil filtration. We cannot recommend specific action as we have limited information with regards to reservoir capacity and/or lubricant type. We recommend you service the filters on this component. We recommend an early resample to monitor this condition. NOTE: Please provide information regarding reservoir capacity, filter type and micron rating with next sample.

PROBLEMATIC TEST RESULTS							
Sample Status				SEVE	RE	ABNORMAL	ABNORMAL
Ferrous Sliding	Scale 0-10	ASTM D7684*		1			
Ferrous Cutting	Scale 0-10	ASTM D7684*		A	2	 1	
Particles >4µm		ASTM D7647	>5000	🔺 257	764	1 4298	▲ 17522
Particles >6µm		ASTM D7647	>1300	<u> </u>)2	1577	2230
Oil Cleanliness		ISO 4406 (c)	>19/17/15	<u> </u>	19/13	<u> </u>	1 21/18/13
				×. · · · ·			

PrtFilter

Customer Id: BRUTIV Sample No.: WC0566940 Lab Number: 02645872 Test Package: IND2+

To manage this report scan the QR code

To discuss the diagnosis or test data: Kevin Marson +1 (289)291-4644 x4644 Kevin.Marson@wearcheck.com

To change component or sample information: Gloria Gonzalez +1 (289)291-4643 x4643 gloria.gonzalez@wearcheck.com

RECOMM		
	AGI	

Action	Status	Date	Done By	Description
Change Filter			?	We recommend you service the filters on this component.
Resample			?	We recommend an early resample to monitor this condition.
Information Required			?	NOTE: Please provide information regarding reservoir capacity, filter type and micron rating with next sample.
Filter Fluid			?	We recommend either performing an oil change or oil filtration. We cannot recommend specific action as we have limited information with regards to reservoir capacity and/or lubricant type.

HISTORICAL DIAGNOSIS

12 Mar 2024 Diag: Kevin Marson

We recommend you service the filters on this component. We recommend an early resample to monitor this condition. No other corrective action is recommended at this time. NOTE: Please provide information regarding reservoir capacity, filter type and micron rating with next sample. Wear particle analysis indicates that the ferrous cutting particles are marginal. All other component wear rates are normal. Cutting wear particles are caused by either hard protuberances (mis-aligned components, etc.), or abrasives entering the system and embedding themselves in softer materials (sand, etc.), and gouging out mating surfaces. There is a moderate amount of silt (particulates < 14 microns in size) present in the oil. The water content is negligible. The system cleanliness is above the acceptable limit for the target ISO 4406 cleanliness code. The AN level is acceptable for this fluid. The oil is still serviceable provided that the contaminant(s) can be reduced to acceptable levels.

28 Nov 2023 Diag: Kevin Marson

We recommend you service the filters on this component. We recommend an early resample to monitor this condition. NOTE: Please provide information regarding reservoir capacity, filter type and micron rating with next sample.All component wear rates are normal. There is a moderate amount of silt (particulates < 14 microns in size) present in the oil. The water content is negligible. The system cleanliness is above the acceptable limit for the target ISO 4406 cleanliness code. The AN level is acceptable for this fluid. The oil is still serviceable provided that the contaminant(s) can be reduced to acceptable levels.

01 Aug 2023 Diag: Kevin Marson

We advise that you check for the source of water entry. Check seals and/or filters for points of contaminant entry. The air breather requires service. If unrated, we recommend that you replace with a suitable micron rated and/or desiccant air breather. If rated, we recommend that you service/replace the breather. We advise that you use off-line filtration with water adsorbent filters to attempt to remove the water from this oil. We recommend an early resample to monitor this condition. NOTE: Please provide information regarding reservoir capacity, filter type and micron rating with next sample.All component wear rates are normal. There is a moderate concentration of water present in the oil. The system cleanliness is acceptable for your target ISO 4406 cleanliness code. The AN level is acceptable for this fluid. The oil is still serviceable provided that the contaminant(s) can be reduced to acceptable levels.

OIL ANALYSIS REPORT

Particles >21µm

Particles >38µm

Particles >71µm

Oil Cleanliness

BRUCE B/0B/54600 0B-54600-SG8-Avon Level Gauge

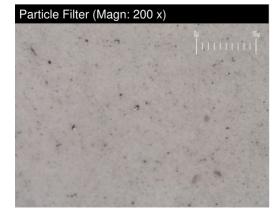
Jet Turbine Fluic SHELL AEROSHELL 500 (--- GAL)

DIAGNOSIS

Recommendation

We recommend either performing an oil change or oil filtration. We cannot recommend specific action as we have limited information with regards to reservoir capacity and/or lubricant type. We recommend you service the filters on this component. We recommend an early resample to monitor this condition. NOTE: Please provide information regarding reservoir capacity, filter type and micron rating with next sample.

A Wear


Wear particle analysis indicates that the ferrous cutting particles are severe. Wear particle analysis indicates that the ferrous sliding particles are abnormal. Cutting wear particles are caused by either hard protuberances (mis-aligned components, etc.), or abrasives entering the system and embedding themselves in softer materials (sand, etc.), and gouging out mating surfaces.

Contaminants

There is a moderate amount of silt (particulates < 14 microns in size) present in the oil. The water content is negligible. The system cleanliness is above the acceptable limit for the target ISO 4406 cleanliness code.

Oil Condition

The AN level is acceptable for this fluid. The oil is no longer serviceable as a result of the abnormal and/or severe wear.

Report Id: BRUTIV [WCAMIS] 02645872 (Generated: 07/09/2024 17:00:50) Rev: 1

▲ 21/18/12

3

2

13

5

4

21/18/13

WEAR PARTICLES

SAMPLE INFORM	IATION	method	limit/base	current	history1	history2
Sample Number		Client Info		WC0566940	WC0566928	WC0628146
Sample Date		Client Info		02 Jul 2024	12 Mar 2024	28 Nov 2023
Machine Age	hrs	Client Info		0	0	0
Oil Age	hrs	Client Info		0	0	0
Oil Changed		Client Info		N/A	N/A	N/A
Sample Status				SEVERE	ABNORMAL	ABNORMAL
WEAR METALS		method	limit/base	current	history1	history2
Iron	ppm	ASTM D5185(m)	>2	1	<1	<1
Chromium	ppm	ASTM D5185(m)	>1	0	0	0
Nickel	ppm	ASTM D5185(m)	>1	<1	<1	0
Titanium	ppm	ASTM D5185(m)	>5	0	0	0
Silver	ppm	ASTM D5185(m)	>2	<1	0	<1
Aluminum	ppm	ASTM D5185(m)	>1	<1	<1	<1
Lead	ppm	ASTM D5185(m)	>2	0	0	<1
Copper	ppm	ASTM D5185(m)	>1	<1	<1	<1
Tin	ppm	ASTM D5185(m)	>1	0	0	0
Antimony	ppm	ASTM D5185(m)		0	0	0
Vanadium	ppm	ASTM D5185(m)		0	0	0
Beryllium	ppm	ASTM D5185(m)		0	0	0
Cadmium	ppm	ASTM D5185(m)		0	0	0
			10 10 10			1.1.1.0
ADDITIVES		method	limit/base	current	history1	history2
ADDITIVES Boron	ppm	Method ASTM D5185(m)	limit/base	current	history1 <1	history2 <1
	ppm ppm		0			
Boron		ASTM D5185(m)	0	<1	<1	<1
Boron Barium	ppm	ASTM D5185(m) ASTM D5185(m)	0 0 0	<1 0	<1 0	<1 <1
Boron Barium Molybdenum	ppm ppm	ASTM D5185(m) ASTM D5185(m) ASTM D5185(m)	0 0 0	<1 0 0	<1 0 0	<1 <1 0
Boron Barium Molybdenum Manganese	ppm ppm ppm	ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m)	0 0 0 0 0	<1 0 0 0	<1 0 0 0	<1 <1 0 0
Boron Barium Molybdenum Manganese Magnesium	ppm ppm ppm ppm	ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m)	0 0 0 0 0 0 1000	<1 0 0 0 0	<1 0 0 0 <1	<1 <1 0 0 0
Boron Barium Molybdenum Manganese Magnesium Calcium	ppm ppm ppm ppm ppm	ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m)	0 0 0 0 0 0 1000	<1 0 0 0 0 0	<1 0 0 <1 <1	<1 <1 0 0 0 0 0
Boron Barium Molybdenum Manganese Magnesium Calcium Phosphorus	ppm ppm ppm ppm ppm ppm	ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m)	0 0 0 0 0 0 1000	<1 0 0 0 0 0 970	<1 0 0 <1 <1 1014	<1 <1 0 0 0 0 1009 <1 4
Boron Barium Molybdenum Manganese Magnesium Calcium Phosphorus Zinc	ppm ppm ppm ppm ppm ppm	ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m)	0 0 0 0 0 0 1000 5	<1 0 0 0 0 0 970 <1	<1 0 0 <1 <1 1014 <1	<1 <1 0 0 0 0 0 1009 <1
Boron Barium Molybdenum Manganese Magnesium Calcium Phosphorus Zinc Sulfur	ppm ppm ppm ppm ppm ppm ppm ppm	ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m)	0 0 0 0 0 0 1000 5	<1 0 0 0 0 0 970 <1 2	<1 0 0 <1 <1 1014 <1 0	<1 <1 0 0 0 0 1009 <1 4
Boron Barium Molybdenum Manganese Magnesium Calcium Phosphorus Zinc Sulfur Lithium CONTAMINANTS Silicon	ppm ppm ppm ppm ppm ppm ppm ppm	ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m)	0 0 0 0 0 0 1000 5 0 0 limit/base >5	<1 0 0 0 0 970 <1 2 <1	<1 0 0 <1 <1 1014 <1 0 <1	<1 <1 0 0 0 0 1009 <1 4 <1
Boron Barium Molybdenum Manganese Magnesium Calcium Phosphorus Zinc Sulfur Lithium CONTAMINANTS	ppm ppm ppm ppm ppm ppm ppm ppm	ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m)	0 0 0 0 0 0 1000 5 0 0 limit/base >5	<1 0 0 0 0 970 <1 2 <1 2 <1	<1 0 0 <1 <1 <1 1014 <1 0 <1 history1	<1 <1 0 0 0 0 0 1009 <1 4 <1 history2
Boron Barium Molybdenum Manganese Magnesium Calcium Phosphorus Zinc Sulfur Lithium CONTAMINANTS Silicon	ppm ppm ppm ppm ppm ppm ppm ppm ppm	ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m)	0 0 0 0 0 1000 5 0 0 limit/base >5 >5 >5	<1 0 0 0 0 970 <1 2 <1 2 <1 2 <1 2	<1 0 0 <1 <1 <1 1014 <1 0 <1 history1 1	<1 <1 0 0 0 0 1009 <1 4 <1 history2 4
Boron Barium Molybdenum Manganese Magnesium Calcium Phosphorus Zinc Sulfur Lithium CONTAMINANTS Silicon Sodium	ppm ppm ppm ppm ppm ppm ppm ppm ppm	ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) method ASTM D5185(m) ASTM D5185(m)	0 0 0 0 0 0 1000 5 0 0 limit/base >5 >5	<1 0 0 0 0 970 <1 2 <1 2 <1 2 <1 2 <1 0	<1 0 0 <1 <1 <1 1014 <1 0 <1 history1 1 0	<1 <1 0 0 0 0 0 1009 <1 4 <1 history2 4 <1
Boron Barium Molybdenum Manganese Magnesium Calcium Phosphorus Zinc Sulfur Lithium CONTAMINANTS Silicon Sodium Potassium	ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm	ASTM D5185(m) ASTM D5185(m)	0 0 0 0 0 1000 5 0 0 limit/base >5 >5 >5	<1 0 0 0 0 970 <1 2 <1 2 <1 2 <1 2 <1 2 <1 2 <1 2 0 0 0	<1 0 0 <1 <1 <1 1014 <1 0 <1 history1 1 0 <1	<1 <1 0 0 0 0 0 1009 <1 4 <1 history2 4 <1 <1
Boron Barium Molybdenum Manganese Magnesium Calcium Phosphorus Zinc Sulfur Lithium CONTAMINANTS Silicon Sodium Potassium Water	ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm	ASTM D5185(m) ASTM D5185(m)	0 0 0 0 0 1000 5 0 0 limit/base >5 >5 >5 >20 >0.05	<1 0 0 0 0 970 <1 2 <1 2 <1 current <1 0 0 0 0 0.047	<1 0 0 <1 <1 <1 1014 <1 0 <1 history1 1 0 <1 0 <1 0.025	<1 <1 0 0 0 0 0 0 1009 <1 4 <1 history2 4 <1 <1 0.029
Boron Barium Molybdenum Manganese Magnesium Calcium Phosphorus Zinc Sulfur Lithium CONTAMINANTS Silicon Sodium Potassium Water ppm Water	ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm	ASTM D5185(m) ASTM D5185(m)	0 0 0 0 0 1000 5 0 0 imit/base >5 >5 >20 >0.05 >500	<1 0 0 0 0 970 <1 2 <1 2 <1 2 <1 0 0 0 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0	<1 0 0 <1 <1 <1 1014 <1 0 <1 history1 1 0 <1 0 <1 0.025 251	<1 <1 0 0 0 0 1009 <1 4 <1 history2 4 <1 <1 0.029 299
Boron Barium Molybdenum Manganese Magnesium Calcium Phosphorus Zinc Sulfur Lithium CONTAMINANTS Silicon Sodium Potassium Water ppm Water	ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm	ASTM D5185(m) ASTM D5304*	0 0 0 0 0 1000 5 0 5 0 limit/base >5 >20 >0.05 >500 limit/base >500	<1 0 0 0 0 970 <1 2 <1 2 <1 2 <1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<1 0 0 (1 <1 1014 <1 0 <1 history1 1 0 <1 0.025 251 history1	<1 <1 0 0 0 0 1009 <1 4 <1 history2 4 <1 <1 0.029 299 history2

ASTM D7647 >80

ASTM D7647 >20

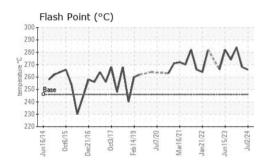
ASTM D7647 >4

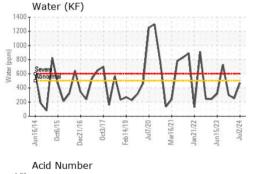
13

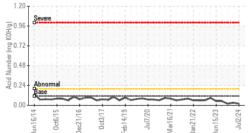
1

1

ISO 4406 (c) >19/17/15 🔺 22/19/13

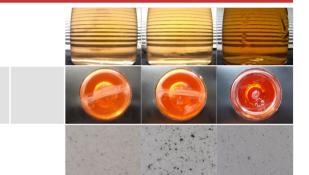

Sample Rating Trend

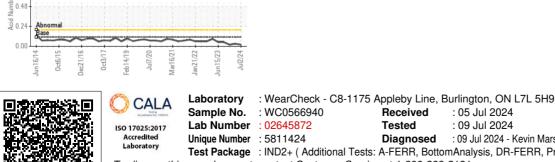




OIL ANALYSIS REPORT

Par 91,520 T	ticle Cou	nt			T 26
22,880 Severe					-24
30,720					-22 8
7,680 Abnor	ital				-20
1,920	>				-18
480.					-16
120		1			-14
30-					-22 -20 -18 -16 -14 -12 -10
8-			-		-10 8
2 -					-8
0	6µ	14µ	21µ	38 ^j µ	71µ
100k 80k 80k 80k	4μm 6μm 14μm	٨		1	
80k	Λ.	ſ	M		A
			The age is a state of the local division of	and	- Variat
Jun16/14	0ct6/15 -	0ct3/17	/20	Mar16/21	Jun15/23 - Jul2/24 -
0					




FLUID DEGRADA	TION	method	limit/base	current	history1	history2
Acid Number (AN)	mg KOH/g	ASTM D974*	0.11	0.02	0.03	0.02
VISUAL		method	limit/base	current	history1	history2
White Metal	scalar	Visual*	NONE	NONE	NONE	NONE
Yellow Metal	scalar	Visual*	NONE	NONE	NONE	NONE
Precipitate	scalar	Visual*	NONE	NONE	NONE	NONE
Silt	scalar	Visual*	NONE	NONE	NONE	NONE
Debris	scalar	Visual*	NONE	NONE	NONE	NONE
Sand/Dirt	scalar	Visual*	NONE	NONE	NONE	NONE
Appearance	scalar	Visual*	NORML	NORML	NORML	NORML
Odor	scalar	Visual*	NORML	NORML	NORML	NORML
Emulsified Water	scalar	Visual*	>0.05	NEG	NEG	NEG
Free Water	scalar	Visual*		NEG	NEG	NEG
FLUID PROPERT	IES	method	limit/base	current	history1	history2
Visc @ 40°C	cSt	ASTM D7279(m)	25.3	25.2	25.6	25.5
Visc @ 100°C	cSt	ASTM D7279(m)	5.2	5.2	5.1	5.1
Viscosity Index (VI)	Scale	ASTM D2270*	141	142	130	131
COC Flash Point	°C	ASTM D92*	246	266	268	284
SAMPLE IMAGES	6	method	limit/base	current	history1	history2

Color

PrtFilter

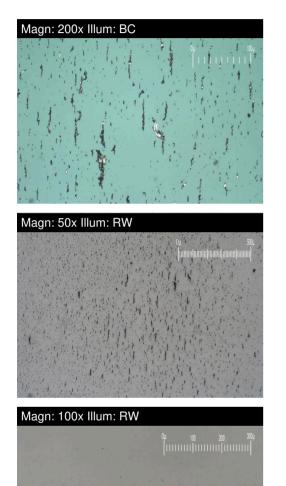
Bottom

Bruce Power - Bruce A PdM P.O.Box 1540, 177 Tie Road,, RM-222 U2 Column 2N11 615` Tiverton, ON

F:

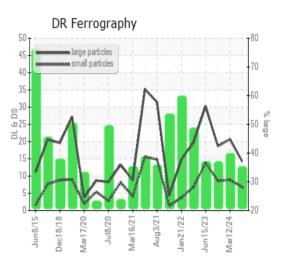
: 09 Jul 2024 - Kevin Marson CA NOG 2T0 Test Package : IND2+ (Additional Tests: A-FERR, BottomAnalysis, DR-FERR, PrtFilter, Spat, VI, ViSoutattact: Andrew Roffey andrew.roffey@brucepower.com To discuss this sample report, contact Customer Service at 1-800-268-2131. T: (519)361-2673 x:17186 Test denoted (*) outside scope of accreditation, (m) method modified, (e) tested at external lab. Validity of results and interpretation are based on the sample and information as supplied.

Report Id: BRUTIV [WCAMIS] 02645872 (Generated: 07/09/2024 17:00:50) Rev: 1


Contact/Location: Andrew Roffey - BRUTIV Page 4 of 6

FERROGRAPHY REPORT

Area BRUCE B/0B/54600 0B-54600-SG8-Avon Level Gauge


Jet Turbine Fluid SHELL AEROSHELL 500 (--- GAL)

DR-FERROGRAP	ΉY	method	limit/base	current	history1	history2
Large Particles		DR-Ferr*		14.2	20.7	18.7
Small Particles		DR-Ferr*		6.8	8.9	8.6
Total Particles		DR-Ferr*	>	21	29.6	27.3
Large Particles Percentage	%	DR-Ferr*		35.2	39.9	37
Severity Index		DR-Ferr*		105	244	189
FERROGRAPHY		method	limit/base	current	history1	history2
Ferrous Rubbing	Scale 0-10	ASTM D7684*		3	3	
Ferrous Sliding	Scale 0-10	ASTM D7684*		 1		
Ferrous Cutting	Scale 0-10	ASTM D7684*		4 2	 1	
Ferrous Rolling	Scale 0-10	ASTM D7684*		1	1	
Ferrous Break-in	Scale 0-10	ASTM D7684*				
Ferrous Spheres	Scale 0-10	ASTM D7684*				
Ferrous Black Oxides	Scale 0-10	ASTM D7684*		1	1	
Ferrous Red Oxides	Scale 0-10	ASTM D7684*				
Ferrous Corrosive	Scale 0-10	ASTM D7684*				
Ferrous Other	Scale 0-10	ASTM D7684*				
Nonferrous Rubbing	Scale 0-10	ASTM D7684*				
Nonferrous Sliding	Scale 0-10	ASTM D7684*				
Nonferrous Cutting	Scale 0-10	ASTM D7684*				
Nonferrous Rolling	Scale 0-10	ASTM D7684*				
Nonferrous Other	Scale 0-10	ASTM D7684*				
Carbonaceous Material	Scale 0-10	ASTM D7684*				
Lubricant Degradation	Scale 0-10	ASTM D7684*				
Sand/Dirt	Scale 0-10	ASTM D7684*		1	1	
Fibres	Scale 0-10	ASTM D7684*				
Spheres	Scale 0-10	ASTM D7684*				
Other	Scale 0-10	ASTM D7684*		1	1	

WEAR

Wear particle analysis indicates that the ferrous cutting particles are severe. Wear particle analysis indicates that the ferrous sliding particles are abnormal. Cutting wear particles are caused by either hard protuberances (mis-aligned components, etc.), or abrasives entering the system and embedding themselves in softer materials (sand, etc.), and gouging out mating surfaces.

This page left intentionally blank