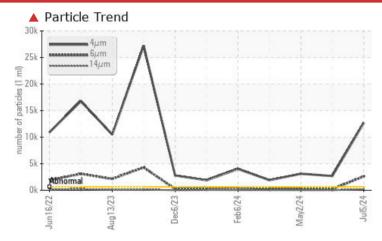


PROBLEM SUMMARY

Sample Rating Trend



MAIN PRESS 4

Hydraulic System

PETRO CANADA HYDREX AW 46 (13000 LTR)

COMPONENT CONDITION SUMMARY

RECOMMENDATION

We advise that you check all areas where contaminants can enter the system. We advise that you perform a filter service, and use off-line filtration to improve the cleanliness of the system fluid. The air breather requires service. If unrated, we recommend that you replace with a suitable micron rated and/or desiccant air breather. If rated, we recommend that you service/replace the breather. Resample in 30-45 days to monitor this situation. Please contact your representative for information regarding the proper sampling kits for your service. NOTE: We recommend using Advanced Oil Monitoring (AOM) kits for this system. The AOM test package includes advanced level testing to determine the suitability of turbine and large industrial compressor oils for continued use.

PROBLEMATIC TE	ST RESULTS				
Sample Status			SEVERE	ABNORMAL	ABNORMAL
Particles >4µm	ASTM D7647	>640	12686	<u>^</u> 2678	<u>▲</u> 3118
Particles >6µm	ASTM D7647	>160	2606	232	264
Particles >14µm	ASTM D7647	>20	217	16	23
Particles >21µm	ASTM D7647	>4	▲ 51	7	7
Oil Cleanliness	ISO 4406 (c)	>16/14/11	2 1/19/15	<u> 19/15/11</u>	▲ 19/15/12

Customer Id: INDMIS Sample No.: WC0943191 Lab Number: 02646250 Test Package: IND 2

To manage this report scan the QR code

To discuss the diagnosis or test data: Kevin Marson +1 (289)291-4644 x4644 Kevin.Marson@wearcheck.com

To change component or sample information: Gloria Gonzalez +1 (289)291-4643 x4643 gloria.gonzalez@wearcheck.com

RECOMMENDED ACTIONS						
Action	Status	Date	Done By	Description		
Change Filter			?	We advise that you perform a filter service, and use off-line filtration to improve the cleanliness of the system fluid.		
Resample			?	Resample in 30-45 days to monitor this situation.		
Contact Required			?	Please contact your representative for information regarding the proper sampling kits for your service.		
Alert			?	NOTE: We recommend using Advanced Oil Monitoring (AOM) kits for this system. The AOM test package includes advanced level testing to determine the suitability of turbine and large industrial compressor oils for continued use.		
Check Breathers			?	The air breather requires service. If unrated, we recommend that you replace with a suitable micron rated and/or desiccant air breather. If rated, we recommend that you service/replace the breather.		
Check Dirt Access			?	We advise that you check all areas where contaminants can enter the system.		
Filter Fluid			?	We advise that you perform a filter service, and use off-line filtration to improve the cleanliness of the system fluid.		

HISTORICAL DIAGNOSIS

04 Jun 2024 Diag: Wes Davis

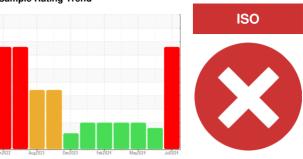
We recommend you service the filters on this component. We recommend an early resample to monitor this condition. Please contact your representative for information regarding the proper sampling kits for your service. NOTE: We recommend using Advanced Oil Monitoring (AOM) kits for this system. The AOM test package includes advanced level testing to determine the suitability of turbine and large industrial compressor oils for continued use. All component wear rates are normal. There is a moderate amount of silt (particulates < 14 microns in size) present in the oil. The system cleanliness is above the acceptable limit for the target ISO 4406 cleanliness code. The AN level is acceptable for this fluid. The condition of the oil is acceptable for the time in service (unconfirmed). The oil is still serviceable provided that the contaminant(s) can be reduced to acceptable levels.

02 May 2024 Diag: Wes Davis

We recommend you service the filters on this component. We recommend an early resample to monitor this condition. Please contact your representative for information regarding the proper sampling kits for your service. NOTE: We recommend using Advanced Oil Monitoring (AOM) kits for this system. The AOM test package includes advanced level testing to determine the suitability of turbine and large industrial compressor oils for continued use. All component wear rates are normal. There is a moderate amount of silt (particulates < 14 microns in size) present in the oil. The system cleanliness is above the acceptable limit for the target ISO 4406 cleanliness code. The AN level is acceptable for this fluid. The condition of the oil is acceptable for the time in service (unconfirmed). The oil is still serviceable provided that the contaminant(s) can be reduced to acceptable levels.

ISO

03 Apr 2024 Diag: Wes Davis


We recommend you service the filters on this component. We recommend an early resample to monitor this condition. Please contact your representative for information regarding the proper sampling kits for your service. NOTE: We recommend using Advanced Oil Monitoring (AOM) kits for this system. The AOM test package includes advanced level testing to determine the suitability of turbine and large industrial compressor oils for continued use. All component wear rates are normal. There is a moderate amount of silt (particulates < 14 microns in size) present in the oil. The system cleanliness is above the acceptable limit for the target ISO 4406 cleanliness code. The AN level is acceptable for this fluid. The condition of the oil is acceptable for the time in service (unconfirmed). The oil is still serviceable provided that the contaminant(s) can be reduced to acceptable levels.

OIL ANALYSIS REPORT

Sample Rating Trend

Machine Id

MAIN PRESS 4

Hydraulic System

PETRO CANADA HYDREX AW 46 (13000 LTR)

DIAGNOSIS

Recommendation

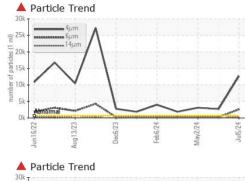
We advise that you check all areas where contaminants can enter the system. We advise that you perform a filter service, and use off-line filtration to improve the cleanliness of the system fluid. The air breather requires service. If unrated, we recommend that you replace with a suitable micron rated and/or desiccant air breather. If rated, we recommend that you service/replace the breather. Resample in 30-45 days to monitor this situation. Please contact your representative for information regarding the proper sampling kits for your service. NOTE: We recommend using Advanced Oil Monitoring (AOM) kits for this system. The AOM test package includes advanced level testing to determine the suitability of turbine and large industrial compressor oils for continued use.

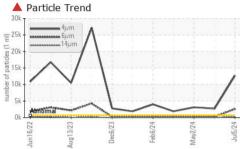
Component wear rates appear to be normal (unconfirmed).

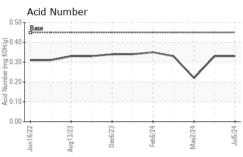
Contamination

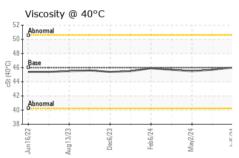
There is a high amount of particulates (2 to 100 microns in size) present in the oil. The system cleanliness code is much higher than the acceptable limit for the target ISO 4406 cleanliness code.

Fluid Condition


The AN level is acceptable for this fluid. The condition of the oil is acceptable for the time in service (unconfirmed). The oil is still serviceable provided that the contaminant(s) can be reduced to acceptable levels.


LTR)		Jun 2022	Aug2023 Dec2023	Feb2024 May2024	Jul2024	
SAMPLE INFORI	MATION	method	limit/base	current	history1	history2
Sample Number		Client Info		WC0943191	WC0921541	WC0921535
Sample Date		Client Info		05 Jul 2024	04 Jun 2024	02 May 2024
Machine Age	mths	Client Info		03 001 2024	0	02 May 2024
Oil Age	mths	Client Info		0	0	0
Oil Changed	1111113	Client Info		N/A	N/A	N/A
Sample Status		Oliciit iiilo		SEVERE	ABNORMAL	ABNORMAL
CONTAMINATIO	N	method	limit/base	current	history1	history2
Water		WC Method	>0.05	NEG	NEG	NEG
WEAR METALS		method	limit/base	current	history1	history2
Iron	ppm	ASTM D5185(m)	>20	12	12	11
Chromium	ppm	ASTM D5185(m)	>20	1	1	1
Nickel	ppm	ASTM D5185(m)	>20	<1	0	0
Titanium	ppm	ASTM D5185(m)	720	0	0	0
Silver	ppm	ASTM D5185(m)		0	0	0
Aluminum	ppm	ASTM D5185(m)	>20	<1	0	0
Lead	ppm	ASTM D5185(m)	>20	0	0	0
Copper	ppm	ASTM D5185(m)	>20	4	5	4
Tin	ppm	ASTM D5185(m)	>20	0	0	0
Antimony	ppm	ASTM D5185(m)	720	0	0	0
Vanadium	ppm	ASTM D5185(m)		0	0	0
Beryllium	ppm	ASTM D5185(m)		0	0	0
Cadmium	ppm	ASTM D5185(m)		0	0	0
ADDITIVES		method	limit/base	current	history1	history2
Boron	ppm	ASTM D5185(m)	0.0	<1	<1	<1
Barium	ppm	ASTM D5185(m)		0	0	0
Molybdenum	ppm	ASTM D5185(m)	0.1	0	0	0
Manganese	ppm	ASTM D5185(m)		<1	0	0
Magnesium	ppm	ASTM D5185(m)	0.3	2	2	2
Calcium	ppm	ASTM D5185(m)	50	51	53	53
Phosphorus	ppm	ASTM D5185(m)	315	323	341	332
Zinc	ppm	ASTM D5185(m)	411	385	386	391
Sulfur	ppm	ASTM D5185(m)	712	717	735	715
Lithium	ppm	ASTM D5185(m)		<1	<1	<1
CONTAMINANTS	3	method	limit/base	current	history1	history2
Silicon	ppm	ASTM D5185(m)	>15	0	0	0
Sodium	ppm	ASTM D5185(m)		<1	1	<1
Potassium	ppm	ASTM D5185(m)	>20	1	1	1
FLUID CLEANLIN	NESS	method	limit/base	current	history1	history2
Particles >4µm		ASTM D7647	>640	12686	<u>^</u> 2678	<u> </u>
Particles >6µm		ASTM D7647	>160	2606	232	264
Particles >14µm		ASTM D7647	>20	217	16	23
Particles >21µm		ASTM D7647	>4	▲ 51	7	7
Particles >38µm		ASTM D7647	>3	4	1	1
Particles >71μm		ASTM D7647	>3	0	0	0
Oil Cleanliness		ISO 4406 (c)	>16/14/11	2 1/19/15	<u> </u>	▲ 19/15/12
7:11:08) Rev: 1						Murria - INDMIS


Contact/Location: Harsh Murria - INDMIS



OIL ANALYSIS REPORT

FLUID DEGRADA	ATION	method	limit/base	current	history1	history2
Acid Number (AN)	mg KOH/g	ASTM D974*	0.45	0.33	0.33	0.22
VISUAL		method	limit/base	current	history1	history2
White Metal	scalar	Visual*	NONE	VLITE	NONE	NONE
Yellow Metal	scalar	Visual*	NONE	NONE	NONE	NONE
Precipitate	scalar	Visual*	NONE	NONE	NONE	NONE
Silt	scalar	Visual*	NONE	NONE	NONE	NONE
Debris	scalar	Visual*	NONE	NONE	NONE	NONE
Sand/Dirt	scalar	Visual*	NONE	NONE	NONE	NONE
Appearance	scalar	Visual*	NORML	NORML	NORML	NORML
Odor	scalar	Visual*	NORML	NORML	NORML	NORML
Emulsified Water	scalar	Visual*	>0.05	NEG	NEG	NEG
Free Water	scalar	Visual*		NEG	NEG	NEG
FLUID PROPERT	TES	method	limit/base	current	history1	history2
Visc @ 40°C	cSt	ASTM D7279(m)	46.0	46.0	45.7	45.5
SAMPLE IMAGES	3	method	limit/base	current	history1	history2

Color			
Bottom			

GRAPHS						
Ferrous Allo	ys				Particle Count	102
5 iron			- L		491,520	ľ
0 + chromiu	m				122,880	1
					30,720	+2
		724	724	724	7,680 Severe	+2
Jun16/22 Aug13/23	Dec6/23	Feb6/24	May2/24.	Jul5/24	1,920	+1
Non-ferrous	Metals			Jul5/24	Abnormal 480	
⁰ T:					120-	
copper lead					30-	-
ennessenses till					8	
23 Z3 Z3	23	24	24	24		
Jun16/22 Aug13/23	Dec6/23	Feb6/24	May2/24	Jul5/24	2-	
Viscosity @	40°C				04μ 6μ 14μ 21μ \odot Acid Number	38µ 71µ
Abnormal					HO 0.60 T 2	
Base	1				Base 0 0.40	
Base Abnormal			-		Acid Number (Ma Normber 0.00 Number 0.00 N	
5		-	-	-	N 0.00	
Jun16/22	Dec6/23	Feb 6/24	May2/24	Jul5/24	Aci Jun 16/22 Jun 16/23 Dec6/23	Feb 6/24 May 2/24
Jun	ă	굔	M	5	Jun	¥ ∑

Laboratory

Sample No. Lab Number : 02646250 Unique Number : 5811802

: WearCheck - C8-1175 Appleby Line, Burlington, ON L7L 5H9 : WC0943191

Received **Tested**

Diagnosed

: 09 Jul 2024

: 08 Jul 2024

: 09 Jul 2024 - Kevin Marson

Test Package : IND 2 (Additional Tests: Bottom)

To discuss this sample report, contact Customer Service at 1-800-268-2131. Test denoted (*) outside scope of accreditation, (m) method modified, (e) tested at external lab. Validity of results and interpretation are based on the sample and information as supplied.

5675 Kennedy Road Mississauga, ON CA L4Z 2H9 Contact: Harsh Murria Harsh.murria@hydro.com

Hydro Extrusion North

T: (819)462-0479 F: (866)462-6478