

OIL ANALYSIS REPORT

Area System 37 - Crude Loading G-3701A Pump / Motor Lubricating Oil Component

Pump

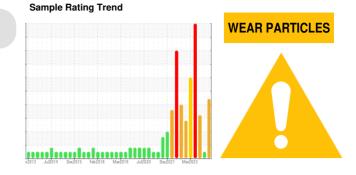
Fluid IRVING HYDRAULIC OIL LP 32 (1190 LTR)

DIAGNOSIS

A Recommendation

We recommend you service the filters on this component. We recommend an early resample to monitor this condition. Please contact your representative for information regarding the proper sampling kits for your service. NOTE: We recommend using IND 3 test kits, this testkit includes Analytical Ferrography which provides a detailed morphological analysis of wear particles present in the fluid.

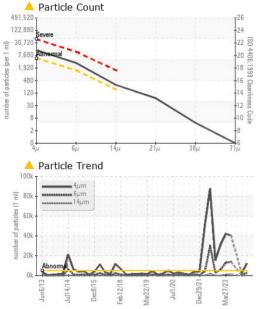
🔺 Wear

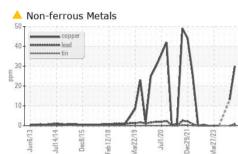

Wear particle analysis indicates that the ferrous cutting particles are abnormal. Copper ppm levels are abnormal. A sharp increase in the copper level is noted. Cutting wear particles are caused by either hard protuberances (mis-aligned components, etc.), or abrasives entering the system and embedding themselves in softer materials (sand, etc.), and gouging out mating surfaces.

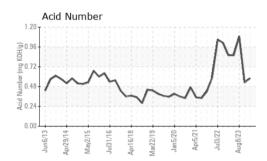
Contaminants

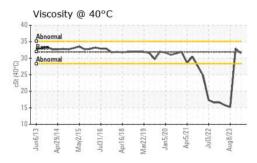
There is a moderate amount of silt (particulates < 14 microns in size) present in the oil.

Oil Condition

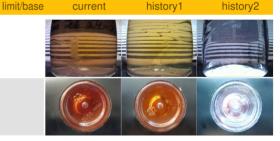

The AN level is acceptable for this fluid. The oil is no longer serviceable as a result of the abnormal and/or severe wear.




SAMPLE INFORM	ATION	method	limit/base	current	history1	history2
Sample Number		Client Info		WC0925240	PP	WC
Sample Date		Client Info		24 Jun 2024	04 Apr 2024	13 Dec 2023
Machine Age	hrs	Client Info		0	0	0
Oil Age	hrs	Client Info		0	0	0
Oil Changed		Client Info		N/A	N/A	N/A
Sample Status				ABNORMAL	NORMAL	SEVERE
CONTAMINATION	N	method	limit/base	current	history1	history2
Water		WC Method	>.1	NEG	NEG	NEG
WEAR METALS		method	limit/base	current	history1	history2
PQ		ASTM D8184*		0		
Iron	ppm	ASTM D5185(m)	>75	<1	0	
Chromium	ppm	ASTM D5185(m)	>5	0	0	
Nickel	ppm	ASTM D5185(m)		<1	0	
Titanium	ppm	ASTM D5185(m)		0	0	
Silver	ppm	ASTM D5185(m)		0	0	
Aluminum	ppm	ASTM D5185(m)	>5	<1	0	
Lead	ppm	ASTM D5185(m)	>10	<1	0	
Copper	ppm	ASTM D5185(m)	>15	A 30	13	
Tin	ppm	ASTM D5185(m)		0	0	
Antimony	ppm	ASTM D5185(m)		0	0	
Vanadium	ppm	ASTM D5185(m)		0	0	
Beryllium	ppm	ASTM D5185(m)		0	0	
Cadmium	ppm	ASTM D5185(m)		0	0	
ADDITIVES		method	limit/base	current	history1	history2
Boron	ppm	ASTM D5185(m)		<1	<1	
Barium	ppm	ASTM D5185(m)		0	0	
Molybdenum	ppm	ASTM D5185(m)		0	0	
Manganese	ppm	ASTM D5185(m)		0	0	
Magnesium	ppm	ASTM D5185(m)		<1	<1	
Calcium	ppm	ASTM D5185(m)		45	49	
Phosphorus	ppm	ASTM D5185(m)		304	310	
Zinc	ppm	ASTM D5185(m)	400	359	392	
Sulfur	ppm	ASTM D5185(m)		919	794	
Lithium	ppm	ASTM D5185(m)		<1	<1	
CONTAMINANTS		method	limit/base	current	history1	history2
Silicon	ppm	ASTM D5185(m)	>20	0	0	
Sodium	ppm	ASTM D5185(m)		0	<1	
Potassium	ppm	ASTM D5185(m)	>20	0	0	



OIL ANALYSIS REPORT



FLUID CLEANLIN	IESS	method	limit/base	current	history1	history2
Particles >4µm		ASTM D7647	>5000	12062	2442	
Particles >6µm		ASTM D7647	>1300	<u> </u>	269	
Particles >14µm		ASTM D7647	>160	e 261	10	
Particles >21µm		ASTM D7647	>40	60	3	
Particles >38µm		ASTM D7647	>10	4	1	
Particles >71µm		ASTM D7647	>3	0	0	
Oil Cleanliness		ISO 4406 (c)	>19/17/14	A 21/19/15	18/15/10	
FLUID DEGRADA	TION	method	limit/base	current	history1	history2
Acid Number (AN)	mg KOH/g	ASTM D974*		0.58	0.53	
VISUAL		method	limit/base	current	history1	history2
White Metal	scalar	Visual*	NONE	VLITE	NONE	NONE
Yellow Metal	scalar	Visual*	NONE	NONE	NONE	NONE
Precipitate	scalar	Visual*	NONE	NONE	NONE	NONE
Silt	scalar	Visual*	NONE	NONE	NONE	NONE
Debris	scalar	Visual*	NONE	VLITE	NONE	NONE
Sand/Dirt	scalar	Visual*	NONE	NONE	NONE	NONE
Appearance	scalar	Visual*	NORML	NORML	NORML	A NOOIL
Odor	scalar	Visual*	NORML	NORML	NORML	NORML
Emulsified Water	scalar	Visual*	>.1	NEG	NEG	NEG
Free Water	scalar	Visual*		NEG	NEG	NEG
FLUID PROPERT	IES	method	limit/base	current	history1	history2
Visc @ 40°C	cSt	ASTM D7279(m)	31.9	31.5	32.9	
SAMPLE IMAGES		method	limit/base	current	history1	history2

Color

Bottom

: 15 Jul 2024 SUITE 1000,, 100 NEW GOWER STREET Sample No. : WC0925240 Received Lab Number : 02647863 Tested : 18 Jul 2024 ISO 17025:2017 Accredited Laboratory Unique Number : 5813415 Diagnosed : 18 Jul 2024 - Kevin Marson Test Package : MAR 3 To discuss this sample report, contact Customer Service at 1-800-268-2131. Test denoted (*) outside scope of accreditation, (m) method modified, (e) tested at external lab. Validity of results and interpretation are based on the sample and information as supplied.

: WearCheck - C8-1175 Appleby Line, Burlington, ON L7L 5H9

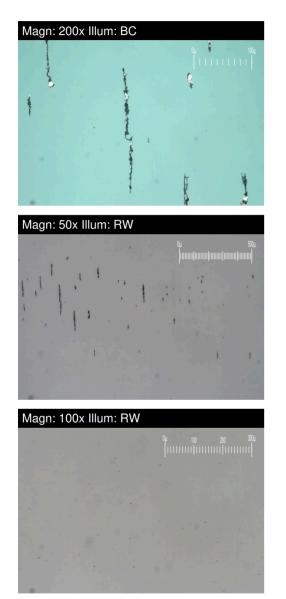
ST.JOHNS, NL CA A1C 6K3 Contact: Sam Nash samantha.m.nash@exxonmobil.com T: F: (709)722-3766

HIBERNIA MGMT & DEVELOPMENT CO. LTD

Report Id: HIBSTJ [WCAMIS] 02647863 (Generated: 07/18/2024 07:40:16) Rev: 1

CALA

Laboratory


Submitted By: ? Page 2 of 4

FERROGRAPHY REPORT

Area System 37 - Crude Loading G-3701A Pump / Motor Lubricating Oil Compone Pump


Fluid IRVING HYDRAULIC OIL LP 32 (1190 LTR)

DR-FERROGRAP	PHY	method	limit/base	current	history1	history2
Large Particles		DR-Ferr*		2.7		
Small Particles		DR-Ferr*		1.9		
Total Particles		DR-Ferr*	>	4.6		
Large Particles Percentage	%	DR-Ferr*		17.4		
Severity Index		DR-Ferr*		2		
FERROGRAPHY		method	limit/base	current	history1	history2
Ferrous Rubbing	Scale 0-10	ASTM D7684*		2		
Ferrous Sliding	Scale 0-10	ASTM D7684*				
Ferrous Cutting	Scale 0-10	ASTM D7684*		4 1		
Ferrous Rolling	Scale 0-10	ASTM D7684*		1		
Ferrous Break-in	Scale 0-10	ASTM D7684*				
Ferrous Spheres	Scale 0-10	ASTM D7684*				
Ferrous Black Oxides	Scale 0-10	ASTM D7684*				
Ferrous Red Oxides	Scale 0-10	ASTM D7684*				
Ferrous Corrosive	Scale 0-10	ASTM D7684*				
Ferrous Other	Scale 0-10	ASTM D7684*				
Nonferrous Rubbing	Scale 0-10	ASTM D7684*				
Nonferrous Sliding	Scale 0-10	ASTM D7684*				
Nonferrous Cutting	Scale 0-10	ASTM D7684*				
Nonferrous Rolling	Scale 0-10	ASTM D7684*				
Nonferrous Other	Scale 0-10	ASTM D7684*				
Carbonaceous Material	Scale 0-10	ASTM D7684*				
Lubricant Degradation	Scale 0-10	ASTM D7684*				
Sand/Dirt	Scale 0-10	ASTM D7684*		1		
Fibres	Scale 0-10	ASTM D7684*				
Spheres	Scale 0-10	ASTM D7684*				
Other	Scale 0-10	ASTM D7684*		1		

WEAR

Wear particle analysis indicates that the ferrous cutting particles are abnormal. Copper ppm levels are abnormal. A sharp increase in the copper level is noted. Cutting wear particles are caused by either hard protuberances (mis-aligned components, etc.), or abrasives entering the system and embedding themselves in softer materials (sand, etc.), and gouging out mating surfaces.

This page left intentionally blank