

OIL ANALYSIS REPORT

Sample Rating Trend

Machine Id **4903303 (S/N 2800)** Component

Compressor

KAESER SIGMA (OEM) M-460 (--- GAL)

DIAGNOSIS

Recommendation

Resample at the next service interval to monitor.

Wear

All component wear rates are normal.

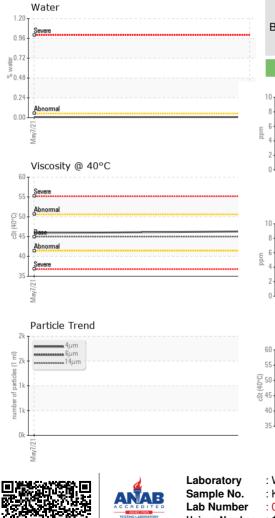
Contamination

The amount and size of particulates present in the system are acceptable. There is no indication of any contamination in the oil.

Fluid Condition

The AN level is acceptable for this fluid. The condition of the oil is suitable for further service.

			May2021	0ct2022		
SAMPLE INFORM	IATION	method	limit/base	current	history1	history2
Sample Number		Client Info		KCP47938D	KCP33770	
Sample Date		Client Info		27 Oct 2022	07 May 2021	
Machine Age	hrs	Client Info		24674	20392	
Oil Age	hrs	Client Info		2500	2000	
Oil Changed		Client Info		Changed	Changed	
Sample Status				NORMAL	ABNORMAL	
WEAR METALS		method	limit/base	current	history1	history2
Iron	ppm	ASTM D5185m	>50	0	0	
Chromium	ppm	ASTM D5185m	>10	0	0	
Nickel	ppm	ASTM D5185m	>3	<1	0	
Titanium	ppm	ASTM D5185m		<1	0	
Silver	ppm	ASTM D5185m	>2	1	0	
Aluminum	ppm	ASTM D5185m		<1	0	
Lead		ASTM D5185m	>10	0	0	
	ppm	ASTM D5185m		2	4	
Copper	ppm			2 <1	4	
Tin	ppm	ASTM D5185m	>10			
Antimony	ppm	ASTM D5185m			0	
Vanadium	ppm	ASTM D5185m		<1	0	
Cadmium	ppm	ASTM D5185m		<1	0	
ADDITIVES		method	limit/base	current	history1	history2
Boron	ppm	ASTM D5185m	0	0	0	
Barium	ppm	ASTM D5185m	90	0	0	
Molybdenum	ppm	ASTM D5185m	0	<1	0	
Manganese	ppm	ASTM D5185m		1	0	
Magnesium	ppm	ASTM D5185m	100	25	0	
Calcium	ppm	ASTM D5185m	0	0	0	
Phosphorus	ppm	ASTM D5185m	0	5	0	
Zinc	ppm	ASTM D5185m	0	4	0	
Sulfur	ppm	ASTM D5185m	23500	21930	18607	
CONTAMINANTS		method	limit/base	current	history1	history2
Silicon		ASTM D5185m	>25	2	2	
	ppm		>20			
Sodium	ppm	ASTM D5185m	. 00	7	0	
Potassium	ppm	ASTM D5185m	>20	<1	<1	
Water	%	ASTM D6304		0.007	0.007	
ppm Water	ppm	ASTM D6304	>500	74.2	78.7	
FLUID CLEANLIN	ESS	method	limit/base	current	history1	history2
Particles >4µm		ASTM D7647		1864		
Particles >6µm		ASTM D7647		458		
Particles >14µm		ASTM D7647	>80	23		
Particles >21µm		ASTM D7647	>20	5		
Particles >38µm		ASTM D7647	>4	1		
Particles >71µm		ASTM D7647	>3	0		
Oil Cleanliness		ISO 4406 (c)	>/17/13	18/16/12		
FLUID DEGRADA		method	limit/base	current	history1	history2
Acid Number (AN)	mg KOH/g	ASTM D8045	1.0	0.32	0.369	
:25:10) Rev: 1	U - U				on: N FERGUS	ON - CITPASC


Report Id: CITPASCA [WUSCAR] 05681181 (Generated: 07/14/2023 09:25:10) Rev: 1

OIL ANALYSIS REPORT

White Metal scalar *Visual NONE NONE NONE NONE iellow Metal scalar *Visual NONE NONE NONE NONE recipitate scalar *Visual NONE NONE NONE NONE ilt scalar *Visual NONE NONE NONE NONE webris scalar *Visual NONE NONE NONE NONE and/Dirt scalar *Visual NONE NONE NONE and/Dirt scalar *Visual NOR NORE NONE and/Dirt scalar *Visual NORML NORML NORML pearance scalar *Visual NORML NORML NORML imulsified Water scalar *Visual >0.05 NEG NEG free Water scalar *Visual >0.05 NEG NEG SAMPLE IMAGES method limit/base current history1 history2 scolor imulsified Water scalar *Imulsified Water scalar *I				lippit/le e e e	ou uma satu	biotewat	bistowo
elow Metal scalar Visual NONE NONE NONE recipitate scalar Visual NONE NONE NONE itit scalar Visual NONE NONE NONE and/Dirt scalar Visual NONE NONE NONE NONE and/Dirt scalar Visual NORML NORML NORML bdor scalar Visual NORML NORML NORML NORML ree Water scalar Visual NORML NORML NORML NORML ree Water scalar Visual Solo NEG NEG ree Water scalar Visual NORML NORML NORML NORML ree Water scalar Visual NORML NORML NORML NORML ree Water scalar Visual Solo NEG NEG NEG ree Water scalar Visual Solo NEG NEG NEG ree Water scalar Visual NORML NORML NORML NORML ree Water scalar Visual Solo NEG NEG NEG ree Water scalar Visual Solo NEG NEG NEG ree Water scalar Visual Solo NEG NEG NEG NEG ree Water scalar Visual Solo NEG NEG NEG NEG ree Water scalar Visual Solo NEG NEG NEG NEG ree Water scalar Visual Solo NEG NEG NEG NEG ree Water scalar Visual Solo NEG NEG NEG NEG ree Water scalar Visual Solo NEG NEG NEG NEG ree Water scalar Visual Solo NEG NEG NEG NEG ree Water scalar Visual Solo NEG NEG NEG NEG ree Water scalar Solo NEG NEG NEG NEG NEG ree Vater scalar Solo NEG NEG NEG NEG NEG NEG state SAMPLE IMAGES method Imit/base current history1 history2 no image Otom Solo Neg	VISUAL		method	limit/base	current	history1	history2
recipitate scalar *Visual NONE htt scalar *Visual NONE ad/Dift scalar *Visual NONE NONE ad/Dift scalar *Visual NONE NORML							
iit scalar *Visual NONE NONE NONE ebris scalar *Visual NONE NONE NONE and/Dirt scalar *Visual NONE NONE NONE dor scalar *Visual NORML NORML NORML NORML muksified Water scalar *Visual NORML NORML NORML NORML muksified Water scalar *Visual NORML NORML NORML NORML ree Water scalar *Visual NORML NORML NORML NORML NORML FLUID PROPERTIES method Imit/base current history1 history2 sis @ 40°C cst ASTM D445 45 45 46.3 45.9 SAMPLE IMAGES method Imit/base current history1 history2 olor no image olor no image contom ferrous Metals		scalar					
ebris scalar 'Visual NONE NONE MODER and/Dit scalar 'Visual NONE NONE NONE NONE opearance scalar 'Visual NORML NORML NORML NORML mulsified Water scalar 'Visual >0.05 NEG NEG ree Water scalar 'Visual >0.05 NEG NEG FLUID PROPERTIES method imit/base current history1 history2 sc @ 40°C cst ASTM D445 45 46.3 45.9 SAMPLE IMAGES method imit/base current history1 history2 no image olor no image generation of the state of the st	recipitate	scalar	*Visual		NONE	NONE	
and/Dirt scalar *Visual NONE NONE NONE ppearance scalar *Visual NORML NORML NORML dor scalar *Visual NORML NORML NORML mulsified Water scalar *Visual >0.05 NEG NEG ELUID PROPERTIES method imit/base current history1 history2 sc @ 40°C cSt ASTM D445 45 46.3 45.9 SAMPLE IMAGES method imit/base current history1 history2 olor no image GRAPHS Ferrous Alloys Particle Count 1000 100	lt	scalar	*Visual	NONE	NONE	NONE	
opearance scalar *Visual NORML NORML NORML dor scalar *Visual NORML NORML NORML NORML mulsified Water scalar *Visual >0.05 NEG NEG ree Water scalar *Visual >0.05 NEG NEG ree Water scalar *Visual >0.05 NEG NEG ree Water scalar *Visual NORML NORML NORML sc@ 40°C cs1 ASTM D445 45 46.3 45.9 SAMPLE IMAGES method imit/base current history1 history2 olor imit/base current history1 history2 no image olor imit/base gange imit/base current history1 no image olor imit/base gange	ebris	scalar	*Visual	NONE	NONE	🔺 MODER	
dor scalar Visual NORML NORML NORML NORML mulsified Water scalar Visual >0.05 NEG NEG ee Water scalar Visual NORML NEG NEG FLUID PROPERTIES method limit/base current history1 history2 sc @ 40°C cSt ASTM D445 45 46.3 45.9 SAMPLE IMAGES method limit/base current history1 history2 polor no image GRAPHS Ferrous Alloys Particle Count find for the formation of	and/Dirt	scalar	*Visual	NONE	NONE	NONE	
mulsified Water scalar Visual >0.05 NEG NEG ee Water scalar Visual NEG NEG FLUID PROPERTIES method limit/base current history1 history2 sc @ 40°C cSt ASTM D445 45 46.3 45.9 SAMPLE IMAGES method limit/base current history1 history2 olor imit/base current history1 no image olor imit/base current history1 no image contor imit/base current history1 no image contor imit/base current history1 no image contor imit/base current history1 imit/base contor imit/base current history1 imit/base contor imit/base current history2 imit/base contor imit/base current history1 imit/base contor imit/base current imit/base imit	opearance	scalar	*Visual	NORML	NORML	NORML	
eee Water scalar *Visual NEG NEG FLUID PROPERTIES method limit/base current history1 history2 sc @ 40°C cSt ASTM D445 45 46.3 45.9 SAMPLE IMAGES method limit/base current history1 history2 color imit/base current history1 no image olor imit/base current history1 no image olor imit/base current history1 no image olor imit/base output imit/base output no image olor imit/base output imit/base output imit/base output imit/base olor imit/base imit/base current history1 no image olor imit/base imit/base output imit/base output imit/base olor imit/base imit/base output imit/base output imit/base imit/base olor imit/base imi	dor	scalar	*Visual	NORML	NORML	NORML	
FLUID PROPERTIES method limit/base current history1 history2 isc @ 40°C cSt ASTM D445 45 46.3 45.9 SAMPLE IMAGES method imit/base current history1 history2 olor imit/base current history1 no image olor imit/base output imit/base output imit/base olor imit/base output output imit/base output output olor imit/base output imit/base output	mulsified Water	scalar	*Visual	>0.05	NEG	NEG	
isc @ 40°C cSt ASTM D445 45 46.3 45.9 SAMPLE IMAGES method imit/base current history1 history2 olor no image ottom 0 image CRAPHS Ferrous Alloys Particle Count 1 0 image 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ree Water	scalar	*Visual		NEG	NEG	
isc @ 40°C cSt ASTM D445 45 46.3 45.9 SAMPLE IMAGES method imit/base current history1 history2 olor no image ottom particle Count no image GRAPHS Ferrous Alloys Particle Count 7 100 method 100 method	FLUID PROPER	TIES	method	limit/base	current	history1	history2
olor no image ottom Particle Count for a series alloys ferrous Alloys for a series alloys					46.3		
olor no image ottom Particle Count for a series alloys ferrous Alloys for a series alloys	SAMPLE IMAGE	S	method	limit/base	current	history1	history2
GRAPHS Ferrous Alloys	olor						no image
Ferrous Alloys Particle Count 191,520 122,880 30,720 7,680 1,920	ottom				\bigcirc		no image
iron 491,520 22 iron 122,880 30,720 22 iron 19,920 460 20 iron 19,920 460 120 iron 19,920 19,920 100 iron 19,920 100 100 iron 100 100 100	GRAPHS						
ion 122,880 24 nickel 30,720 20 nickel 1920 7,660 1920 Non-ferrous Metals 1920 400 1920 Viscosity @ 40°C 200 100 100 Abnormal 200 100 100 Severe 100 100 100 Jaze Abnormal 200 100 Jaze Abnormal 24 100 Jaze 100 100 100 100 Jaze 100 100 100 100 100 Jaze 100 100 100 100 100 100 Jaze 100 100 100 100 100 100 100	Ferrous Alloys			101 020		t	20
Non-ferrous Metals 7,680 120 1,920 120 1,920 120 1,920 120 1,920 120 1,920 120 1,920 120 10	iron			101,520			20
Non-ferrous Metals				122,880			-24
Non-ferrous Metals				30.720			22
Non-ferrous Metals 1920 480 Image: Severe Image: Severe Image: Severe Image: Severe Abnormal Severe Image: Severe Image: Severe Image: Severe				50,720	[122
Image: Construction of the second decision o					- N.		-20
δ δ	7/21			17/22 Iml - 1 min			10
δ δ	Mar			0ct2 s (per		N	+18
000 000 <td>Non-ferrous Meta</td> <td>ls</td> <td></td> <td>100 HB</td> <td></td> <td>•</td> <td>16</td>	Non-ferrous Meta	ls		100 HB		•	16
δ δ	conner i			r of b	/	·	
000 000 <td>Loopper</td> <td></td> <td></td> <td></td> <td></td> <td><u>``</u></td> <td>¹⁴</td>	Loopper					<u>``</u>	¹⁴
Viscosity @ 40°C 2 2 4 4 2 4 4 3 6 7 6 7 6 7 6 7 6 7 6 7 7 6 7 7 6 7 7 6 7 7 7 6 7	tin				-		12
Viscosity @ 40°C 2 2 4 4 2 4 4 3 6 7 6 7 6 7 6 7 6 7 6 7 7 6 7 7 6 7 7 6 7 7 7 6 7							
Viscosity @ 40°C Severe Abnomal Severe Sev					Berme mal		
Viscosity @ 40°C Severe Abnomal Severe Sever Se	//21		*********************	22/1			-8
Viscosity @ 40°C Severe Abnomal Abnomal Severe Abnomal	May			0ct2			
Abnomal Severe 60.72	Viscosity @ 40°C			- 0 4	μ 6μ	14μ 21μ	38µ 71µ
Severe Abnormal <				-120	Acid Number		
Abnormal Base			*****	(B) HO HO 96	Basermal		
Base boomal 0.48 0.004 0.0040.0040	Abnormal			E 0.72	-		
Abnomal Severe	Base		****	·····································			
	Abnormal			U.24			
	Severe			10	1		

0ct27/22 -Mav7/71 0ct27/22 Mav7 : WearCheck USA - 501 Madison Ave., Cary, NC 27513 **CITY OF PASO ROBLES** : KCP47938D Received : 31 Oct 2022 3200 SULPHUR SPRINGS RD Diagnosed : 02 Nov 2022 PASO ROBLES, CA : 05681181 Unique Number : 10195752 Diagnostician : Don Baldridge US 93446 Test Package : IND 2 (Additional Tests: KF, PrtCount) Contact: N FERGUSON NFERGUSON@PRCITY.COM To discuss this sample report, contact Customer Service at 1-800-237-1369. * - Denotes test methods that are outside of the ISO 17025 scope of accreditation. T: F: Statements of conformity to specifications are based on the simple acceptance decision rule (JCGM 106:2012)

Certificate L2367