

OIL ANALYSIS REPORT

Sample Rating Trend

NORMAL

Machine Id Component **Hydraulic System** CHEVRON RANDO HD 68 (150 GAL)

Recommendation

Resample at the next service interval to monitor.

Wear

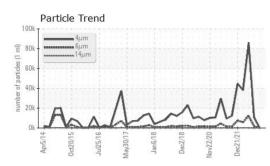
All component wear rates are normal.

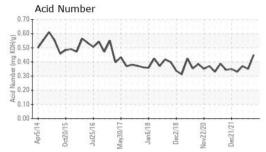
Contamination

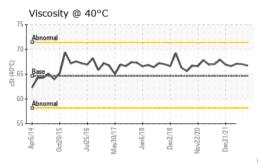
There is no indication of any contamination in the oil. The amount and size of particulates present in the system are acceptable.

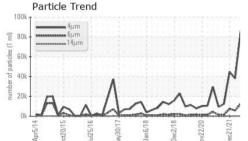
Fluid Condition

The AN level is acceptable for this fluid. The condition of the oil is suitable for further service.

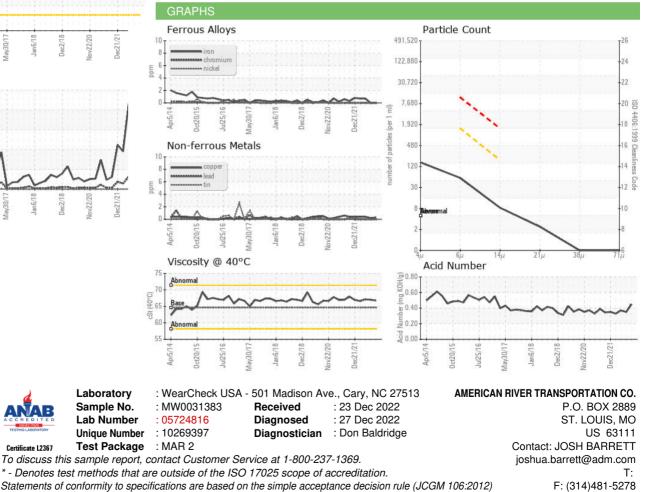

2014	0.0	2015	 Jul2	016	_	Ma	v201	7	J	an2l	018		Deci	018	3	No	v202	0	ſ	lec2		 -
			11							1,									C.			π.
		6.0	TI						÷.,	1	1	۰.	÷.,	÷		ė ė	÷.,		÷.,	ė ė		
	•																					
				1.1																		
																					-	
			111	11																		
																						-




SAMPLE INFORM	IATION	method	limit/base	current	history1	history2
Sample Number		Client Info		MW0031383	MW0043587	MW0043603
Sample Date		Client Info		22 Nov 2022	03 Nov 2022	27 Sep 2022
Machine Age	hrs	Client Info		0	0	0
Oil Age	hrs	Client Info		47108	46630	48825
Oil Changed		Client Info		Not Changd	Not Changd	Not Changd
Sample Status				NORMAL	ATTENTION	ABNORMAL
WEAR METALS		method	limit/base	current	history1	history2
Iron	ppm	ASTM D5185m	>20	0	0	<1
Chromium	ppm	ASTM D5185m	>10	0	0	0
Nickel	ppm	ASTM D5185m	>10	0	0	0
Titanium	ppm	ASTM D5185m		0	0	0
Silver	ppm	ASTM D5185m		0	0	0
Aluminum	ppm	ASTM D5185m	>10	0	<1	<1
Lead	ppm	ASTM D5185m	>20	0	0	0
Copper	ppm	ASTM D5185m	>20	<1	<1	<1
Tin	ppm	ASTM D5185m	>10	0	0	0
Vanadium	ppm	ASTM D5185m		0	0	0
Cadmium	ppm	ASTM D5185m		0	0	0
ADDITIVES		method	limit/base	current	history1	history2
Boron	ppm	ASTM D5185m		0	0	0
Barium	ppm	ASTM D5185m		0	0	0
Molybdenum	ppm	ASTM D5185m		0	0	0
Manganese	ppm	ASTM D5185m		0	0	<1
Magnesium	ppm	ASTM D5185m		0	0	0
Calcium	ppm	ASTM D5185m		43	42	41
Phosphorus	ppm	ASTM D5185m		391	272	320
Zinc	ppm	ASTM D5185m		447	363	424
Sulfur	ppm	ASTM D5185m		880	681	998
CONTAMINANTS		method	limit/base	current	history1	history2
Silicon	ppm	ASTM D5185m	>15	2	<1	0
Sodium	ppm	ASTM D5185m		<1	0	0
Potassium	ppm	ASTM D5185m	>20	0	0	<1
FLUID CLEANLIN	IESS	method	limit/base	current	history1	history2
Particles >4µm		ASTM D7647		138	10426	85971
Particles >6µm		ASTM D7647	>1300	50	1623	12278
Particles >14µm		ASTM D7647	>160	7	31	146
Particles >21µm		ASTM D7647		2	3	29
Particles >38µm		ASTM D7647	>10	0	0	2
Particles >71µm		ASTM D7647	>3	0	0	0
Oil Cleanliness		ISO 4406 (c)	>/17/14	14/13/10	2 1/18/12	4 /21/14
FLUID DEGRADA	TION	method	limit/base	current	history1	history2
Acid Number (AN)	mg KOH/g	ASTM D8045		0.45	0.35	0.37



OIL ANALYSIS REPORT



VISUAL		method	limit/base	current	history1	history2
White Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Yellow Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Precipitate	scalar	*Visual	NONE	NONE	NONE	NONE
Silt	scalar	*Visual	NONE	NONE	NONE	NONE
Debris	scalar	*Visual	NONE	NONE	NONE	NONE
Sand/Dirt	scalar	*Visual	NONE	NONE	NONE	NONE
Appearance	scalar	*Visual	NORML	NORML	NORML	NORML
Odor	scalar	*Visual	NORML	NORML	NORML	NORML
Emulsified Water	scalar	*Visual	>0.05	NEG	NEG	NEG
Free Water	scalar	*Visual		NEG	NEG	NEG
FLUID PROPERT	IES	method	limit/base	current	history1	history2
Visc @ 40°C	cSt	ASTM D445	64.6	66.7	67.0	67.1
SAMPLE IMAGES	\$	method	limit/base	current	history1	history2
Color						
Bottom					6	(6)

Statements of conformity to specifications are based on the simple acceptance decision rule (JCGM 106:2012)

Contact/Location: JOSH BARRETT - AMESAI