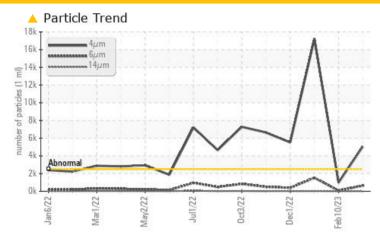


PROBLEM SUMMARY

Sample Rating Trend

ISO


HSS - HIGH PRESS

Component **Hydraulic System**

TOTAL AZOLLA ZS 22 (5 GAL)

Jan-2022 Marž022 Manj2022 Jud022 Oc2022 Oc

COMPONENT CONDITION SUMMARY

RECOMMENDATION

No corrective action is recommended at this time. Resample at the next service interval to monitor.

PROBLEMATIC TE	ST RESULTS				
Sample Status			ABNORMAL	NORMAL	ABNORMAL
Particles >4µm	ASTM D7647	>2500	<u></u> 5037	972	<u> </u>
Oil Cleanliness	ISO 4406 (c)	>18/16/13	20/16/10	17/14/10	2 1/18/12

Customer Id: HAWCHANC Sample No.: WC0700571 Lab Number: 05781217 Test Package: PLANT

To manage this report scan the QR code

To discuss the diagnosis or test data: Jonathan Hester +1 919-379-4092 x4092 jhester@wearcheckusa.com

To change component or sample information: Customer Service +1 1-800-237-1369 customerservice@wearcheck.com

RECOMMENDED ACTIONS

There are no recommended actions for this sample.

HISTORICAL DIAGNOSIS

10 Feb 2023 Diag: Don Baldridge

NORMAL

Resample at the next service interval to monitor. All component wear rates are normal. The amount and size of particulates present in the system are acceptable. There is no indication of any contamination in the oil. The AN level is acceptable for this fluid. The condition of the oil is suitable for further service.

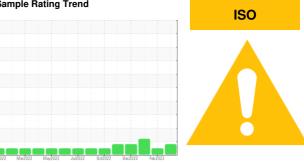
01 Feb 2023 Diag: Don Baldridge

150

No corrective action is recommended at this time. Resample at the next service interval to monitor.All component wear rates are normal. There is a high amount of silt (particulates < 14 microns in size) present in the oil. The AN level is acceptable for this fluid. The condition of the oil is suitable for further service.

01 Dec 2022 Diag: Don Baldridge

ISO


No corrective action is recommended at this time. Resample at the next service interval to monitor.All component wear rates are normal. There is a high amount of silt (particulates < 14 microns in size) present in the oil. The AN level is acceptable for this fluid. The condition of the oil is suitable for further service.

OIL ANALYSIS REPORT

Sample Rating Trend

HSS - HIGH PRESS

Component **Hydraulic System**

TOTAL AZOLLA ZS 22 (5 GAL)

DIAGNOSIS

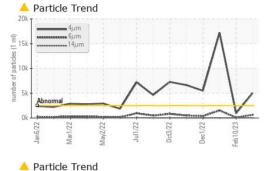
Recommendation

No corrective action is recommended at this time. Resample at the next service interval to monitor.

All component wear rates are normal.

Contamination

There is a high amount of silt (particulates < 6 microns in size) present in the oil.


Fluid Condition

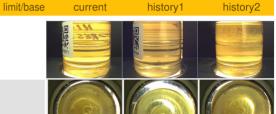
The AN level is acceptable for this fluid. The condition of the oil is suitable for further service.

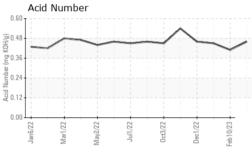
		Jan2022 M	ar2022 May2022 Jul	2022 Oct2022 Dec2022	Feb 2023	
SAMPLE INFORM	MATION	method	limit/base	current	history1	history2
Sample Number		Client Info		WC0700571	WC0700564	WC0700561
Sample Date		Client Info		01 Mar 2023	10 Feb 2023	01 Feb 2023
Machine Age	hrs	Client Info		0	0	0
Oil Age	hrs	Client Info		0	0	0
Oil Changed		Client Info		N/A	N/A	N/A
Sample Status				ABNORMAL	NORMAL	ABNORMAL
WEAR METALS		method	limit/base	current	history1	history2
Iron	ppm	ASTM D5185m	>20	2	0	2
Chromium	ppm	ASTM D5185m	>20	0	0	0
Nickel	ppm	ASTM D5185m	>20	0	0	0
Titanium	ppm	ASTM D5185m		0	0	0
Silver	ppm	ASTM D5185m		0	0	0
Aluminum	ppm	ASTM D5185m		0	0	0
Lead	ppm	ASTM D5185m	>20	0	0	0
Copper	ppm	ASTM D5185m		1	<1	<1
Tin	ppm	ASTM D5185m	>20	0	0	0
Vanadium	ppm	ASTM D5185m		0	0	0
Cadmium	ppm	ASTM D5185m		0	0	0
ADDITIVES		method	limit/base	current	history1	history2
Boron	ppm	ASTM D5185m		0	0	0
Barium	ppm	ASTM D5185m		0	0	2
Molybdenum	ppm	ASTM D5185m		0	0	0
Manganese	ppm	ASTM D5185m		0	0	0
Magnesium	ppm	ASTM D5185m		0	<1	<1
Calcium	ppm	ASTM D5185m		44	50	48
Phosphorus	ppm	ASTM D5185m		286	309	308
Zinc	ppm	ASTM D5185m		368	417	404
Sulfur	ppm	ASTM D5185m		871	894	800
CONTAMINANTS	5	method	limit/base	current	history1	history2
Silicon	ppm	ASTM D5185m	>15	1	<1	1
Sodium	ppm	ASTM D5185m		<1	0	0
Potassium	ppm	ASTM D5185m	>20	0	2	1
FLUID CLEANLIN	IESS	method	limit/base	current	history1	history2
Particles >4μm		ASTM D7647	>2500	<u>▲</u> 5037	972	▲ 17221
Particles >6µm		ASTM D7647	>640	633	83	<u> </u>
Particles >14μm		ASTM D7647	>80	10	5	21
Particles >21μm		ASTM D7647	>20	1	0	4
Particles >38μm		ASTM D7647	>4	0	0	0
Particles >71μm		ASTM D7647		0	0	0
Oil Cleanliness		ISO 4406 (c)	>18/16/13	<u>^</u> 20/16/10	17/14/10	<u>^</u> 21/18/12
FLUID DEGRADA	TION	method	limit/base	current	history1	history2
Acid Number (AN)	mg KOH/g	ASTM D8045		0.46	0.41	0.45

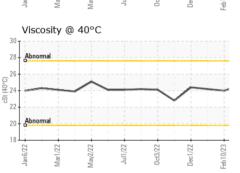
OIL ANALYSIS REPORT

VISUAL		method	limit/base	current	history1	history2
White Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Yellow Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Precipitate	scalar	*Visual	NONE	NONE	NONE	NONE
Silt	scalar	*Visual	NONE	NONE	NONE	NONE
Debris	scalar	*Visual	NONE	NONE	NONE	NONE
Sand/Dirt	scalar	*Visual	NONE	NONE	NONE	NONE
Appearance	scalar	*Visual	NORML	NORML	NORML	NORML
Odor	scalar	*Visual	NORML	NORML	NORML	NORML
Emulsified Water	scalar	*Visual	>0.05	NEG	NEG	NEG
Free Water	scalar	*Visual		NEG	NEG	NEG
EL LUD DD 0.DED.						

15k -	4μm 6μm 14μm]			/	1
10k -					_/	1
5k -			/	/	$ \mathcal{J} $	
5k - Abno	rmal				<u></u>	


FLUID PROPE	RIIES	method	ilmit/base	current	nistory i	nistory
Visc @ 40°C	cSt	ASTM D445		24.6	24.0	24.2


method



SAMPLE IMAGES

Bottom

GR	RAPHS												
Fer	rous All	oys			,		▲ Part	icle Co	unt				T ²⁶
	iron chrom	ium				hi	122,880						-24
4	ПСКЕ			/	\land		30,720 Severe						-22
0	22	22	22	22	22	- E	- ₹ 7,680 - Absorm						-20 🗷
Jan6/22	Mar1/22	May2/22	Jul1/22	0ct3/22	Dec1/22	Feb10/23	1,920		N .				18 110 4406:1999 Cleanliness Code
	n-ferrou	s Met	als				480	1					-16 CE
8	coppe						1,920 480 480 120 480 480 480 480 480 480 480 480 480 48		1:				-14 ess
- cT	tin	J					- E 30+		1				-12 8
2-							8-		1	\			-10
Jan6/22	Mar1/22	May2/22	Jul1/22	0ct3/22	Dec1/22	Feb 10/23	2			/			-8
	cosity @		_			2	$0_{4\mu}$	6 _µ	14μ		21μ	38μ	71 _µ 6
30	ormal						ACIO 	Numb	oer				
		_					Q 0.48		<u> </u>		_/	_	
25 25 Abn	ormal						Acid Mumber (100 / 100 /						
an6/22 +	Mar1/22 -	ay2/22 -	Jul1/22 -	Oct3/22 -	ec1/22 -	b10/23	Ac an 6/22	//ar1/22	ay2/22	Jul1/22	Oct3/22 -	ec1/22 -	:b10/23

Certificate L2367

Laboratory Sample No. Lab Number **Unique Number**

: 05781217 : 10360887 Test Package : PLANT

: WearCheck USA - 501 Madison Ave., Cary, NC 27513 Received : WC0700571

Diagnosed

: 02 Mar 2023 : 07 Mar 2023 Diagnostician : Jonathan Hester **HAWE HYDRAULICS - HUNTERSVILLE** 13020 JAMESBURG DR SUITE A HUNTERSVILLE, NC

US 28078

F: (704)509-6302

Contact: Kristina Smith k.smith@hawe.com T: (704)927-5610

To discuss this sample report, contact Customer Service at 1-800-237-1369.

* - Denotes test methods that are outside of the ISO 17025 scope of accreditation. Statements of conformity to specifications are based on the simple acceptance decision rule (JCGM 106:2012)

Report Id: HAWCHANC [WUSCAR] 05781217 (Generated: 11/01/2023 13:22:27) Rev: 1

Contact/Location: Kristina Smith - HAWCHANC