

Machine Id 5523600 (S/N 1052)

COMPRESSORS Built for a lifetime."

Component Compressor Fluid KAESER SIGMA (OEM) M-460 (--- GAL)

COMPONENT CONDITION SUMMARY

RECOMMENDATION

No corrective action is recommended at this time. The filter change at the time of sampling has been noted. Resample at the next service interval to monitor.

PROBLEMATIC TEST RESULTS Sample Status ABNORMAL ABNORMAL ABNORMAL Particles >6µm ASTM D7647 >1300 6370 Particles >14µm ASTM D7647 >80 ASTM D7647 >20 Particles >21µm Particles >38µm ASTM D7647 >4 **6 Oil Cleanliness** ISO 4406 (c) >--/17/13 🔺 21/20/16

Customer Id: FRELEXNC Sample No.: KCPA005322 Lab Number: 05881541 Test Package: IND 2

To manage this report scan the QR code

To discuss the diagnosis or test data: Doug Bogart +1 (800)237-1369 x4016 dougb@wearcheckusa.com

To change component or sample information: Customer Service +1 1-800-237-1369 customerservice@wearcheck.com There are no recommended actions for this sample.

HISTORICAL DIAGNOSIS

12 Jul 2022 Diag: Jonathan Hester

Oil and filter change at the time of sampling has been noted. We were unable to perform a particle count due to a high concentration of particles present in this sample. We recommend an early resample in 500 hours to monitor this condition.All component wear rates are normal. Free water present. There is a light concentration of water present in the oil. Moderate concentration of visible dirt/debris present in the oil. The AN level is acceptable for this fluid. The condition of the oil is suitable for further service.

VIS DEBRIS

12 Feb 2021 Diag: Don Baldridge

No corrective action is recommended at this time. Oil and filter change at the time of sampling has been noted. Resample at the next service interval to monitor. We were unable to perform a particle count due to a high concentration of particles present in this sample.All component wear rates are normal. Moderate concentration of visible dirt/debris present in the oil. The AN level is acceptable for this fluid. The condition of the oil is acceptable for the time in service.

OIL ANALYSIS REPORT

Sample Rating Trend ISO

Machine Id 5523600 (S/N 1052) Component

Compressor Fluid KAESER SIGMA (OEM) M-460 (--- GAL)

DIAGNOSIS

Recommendation

No corrective action is recommended at this time. The filter change at the time of sampling has been noted. Resample at the next service interval to monitor.

Wear

All component wear rates are normal.

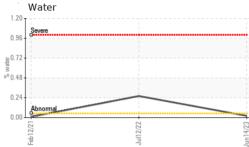
Contamination

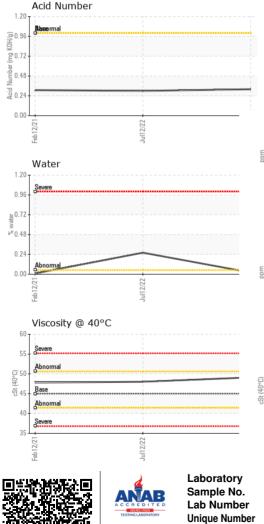
There is a high amount of particulates present in the oil.

Fluid Condition

The AN level is acceptable for this fluid. The condition of the oil is suitable for further service.

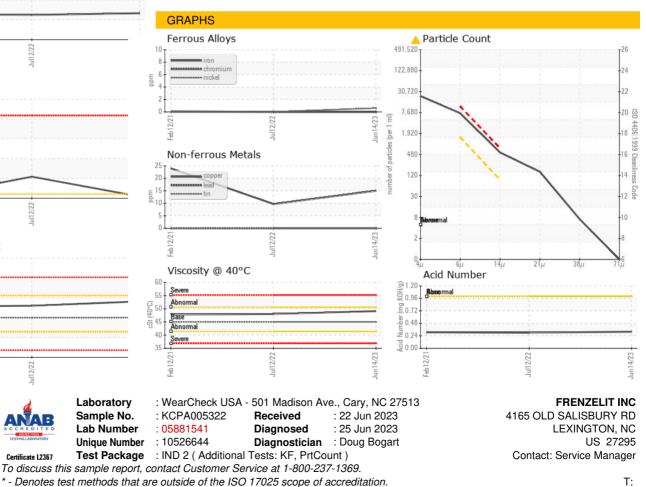
SAMPLE INFORM	ATION	method	limit/base	current	history1	history2
Sample Number		Client Info		KCPA005322	KCP40567	KCP27077
Sample Date		Client Info		14 Jun 2023	12 Jul 2022	12 Feb 2021
Machine Age	hrs	Client Info		10787	8783	7043
Oil Age	hrs	Client Info		0	3000	3600
Oil Changed		Client Info		N/A	Changed	Changed
Sample Status				ABNORMAL	ABNORMAL	ABNORMAL
WEAR METALS		method	limit/base	current	history1	history2
Iron	ppm	ASTM D5185m	>50	0	0	<1
Chromium	ppm	ASTM D5185m	>10	0	0	0
Nickel	ppm	ASTM D5185m	>3	<1	0	0
Titanium	ppm	ASTM D5185m	>3	0	0	0
Silver	ppm	ASTM D5185m	>2	0	<1	0
Aluminum	ppm	ASTM D5185m	>10	0	<1	<1
Lead	ppm	ASTM D5185m	>10	0	0	0
Copper	ppm	ASTM D5185m		15	10	24
Tin	ppm	ASTM D5185m	>10	0	0	0
Antimony	ppm	ASTM D5185m	-			0
Vanadium	ppm	ASTM D5185m		0	0	0
Cadmium	ppm	ASTM D5185m		0	0	0
	44		11	-	-	
ADDITIVES		method	limit/base	current	history1	history2
Boron	ppm	ASTM D5185m	0	0	8	12
Barium	ppm	ASTM D5185m	90	30	0	0
Molybdenum	ppm	ASTM D5185m	0	0	0	0
Manganese	ppm	ASTM D5185m		<1	0	0
Magnesium	ppm	ASTM D5185m	100	57	23	15
Calcium	ppm	ASTM D5185m	0	3	0	0
Phosphorus	ppm	ASTM D5185m	0	2	<1	4
Zinc	ppm	ASTM D5185m	0	0	17	18
Sulfur	ppm	ASTM D5185m	23500	26858	23302	17507
CONTAMINANTS		method	limit/base	current	history1	history2
Silicon	ppm	ASTM D5185m	>25	<1	<1	2
Sodium	ppm	ASTM D5185m		19	10	7
Potassium	ppm	ASTM D5185m	>20	5	<1	0
Water	%	ASTM D6304	>0.05	0.021	0.261	0.009
ppm Water	ppm	ASTM D6304	>500	216.0	A 2610	98.6
FLUID CLEANLIN	ESS	method	limit/base	current	history1	history2
Particles >4µm		ASTM D7647		19880		
Particles >6µm		ASTM D7647	>1300	6370		
Particles >14µm		ASTM D7647	>80	483		
Particles >21µm		ASTM D7647	>20	<u> </u>		
Particles >38µm		ASTM D7647	>4	<u> </u>		
Particles >71µm		ASTM D7647	>3	0		
Oil Cleanliness		ISO 4406 (c)	>/17/13	21/20/16		
FLUID DEGRADA	TION	method	limit/base	current	history1	history2
()	Contact/Location: Service Manager - FRELEXIC					
Acid Number (AN)	mg KOH/g	ASTM D8045	1.0	0.32	0.30	0.30


Report Id: FRELEXNC [WUSCAR] 05881541 (Generated: 07/13/2023 11:58:23) Rev: 1


Contact/Location: Service Manager - FRELEXNC

OIL ANALYSIS REPORT

A Particle Tre	end	
4μm	1	
Ē 20k - 14μm	1	
² 20k - ³ 20k - ³ 15k - ¹ 4μn ¹ 0 10k - ¹ 0 10k -		
to 10k		
0k + 12/2	600	4/23
Feb12/21	0000 million	Jun14/23



VISUAL		method	limit/base	current	history1	history2
White Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Yellow Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Precipitate	scalar	*Visual	NONE	NONE	NONE	NONE
Silt	scalar	*Visual	NONE	NONE	NONE	NONE
Debris	scalar	*Visual	NONE	NONE	🔺 MODER	🔺 MODER
Sand/Dirt	scalar	*Visual	NONE	NONE	NONE	NONE
Appearance	scalar	*Visual	NORML	NORML	NORML	NORML
Odor	scalar	*Visual	NORML	NORML	NORML	NORML
Emulsified Water	scalar	*Visual	>0.05	NEG	0.2%	NEG
Free Water	scalar	*Visual		NEG	1 .0	NEG
FLUID PROPERT	TIES	method	limit/base	current	history1	history2
Visc @ 40°C	cSt	ASTM D445	45	49.1	48.0	47.8
SAMPLE IMAGES	S	method	limit/base	current	history1	history2
Color						

Bottom

* - Denotes test methods that are outside of the ISO 17025 scope of accreditation.

Statements of conformity to specifications are based on the simple acceptance decision rule (JCGM 106:2012)

Certificate L2367

Contact/Location: Service Manager - FRELEXNC

F: