

OIL ANALYSIS REPORT

LOG LINE LINE 1 MAIN HEADER HPU RESERVOIR (S/N DE105H62)

Component **Hydraulic System**

AW HYDRAULIC OIL ISO 68 (--- GAL)

DIAGNOSIS

Recommendation

Little or no information is provided as to the component and lubricant being tested. Recommendations are therefore generic in nature and may not apply to the current application. Please forward information as to equipment type, reservoir capacity, lubricant type and any pertinent information to allow for a more accurate assessment. Resample at the next service interval to monitor. NOTE: Please provide information regarding reservoir capacity, filter type and micron rating with next sample. Please specify the brand, type, and viscosity of the oil on your next sample.

Wear

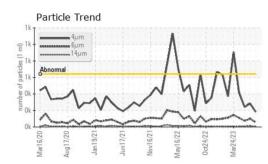
All component wear rates are normal.

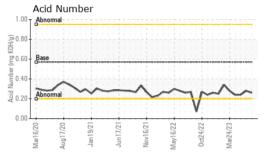
Contamination

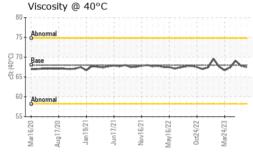
The system cleanliness is acceptable for your target ISO 4406 cleanliness code. The system and fluid cleanliness is acceptable.

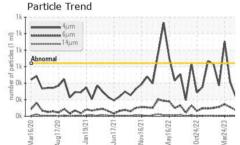
Fluid Condition

The AN level is acceptable for this fluid. The condition of the oil is suitable for further service.

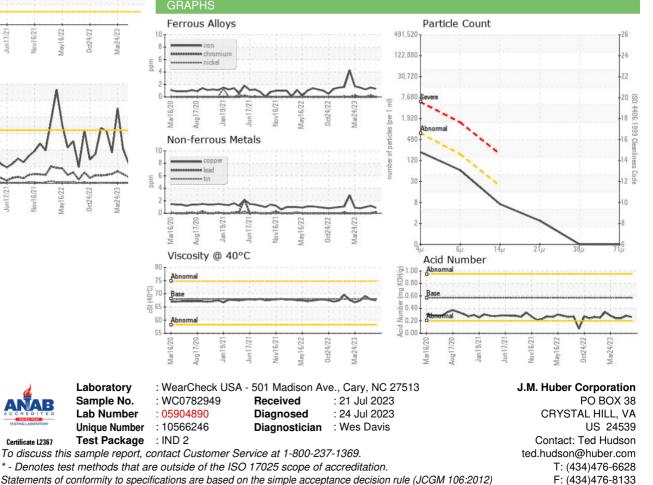



Sample Rating Trend


SAMPLE INFORM	IATION	method	limit/base	current	history1	history2
Sample Number		Client Info		WC0782949	WC0782946	WC0782901
Sample Date		Client Info		17 Jul 2023	26 Jun 2023	27 May 2023
Machine Age	hrs	Client Info		0	0	0
Oil Age	hrs	Client Info		0	0	0
Oil Changed		Client Info		N/A	N/A	N/A
Sample Status				NORMAL	NORMAL	NORMAL
WEAR METALS		method	limit/base	current	history1	history2
Iron	ppm	ASTM D5185m	>20	1	2	1
Chromium	ppm	ASTM D5185m	>20	0	0	0
Nickel	ppm	ASTM D5185m	>20	0	<1	0
Titanium	ppm	ASTM D5185m		0	0	<1
Silver	ppm	ASTM D5185m		0	0	0
Aluminum	ppm	ASTM D5185m	>20	0	<1	0
Lead	ppm	ASTM D5185m	>20	<1	0	0
Copper	ppm	ASTM D5185m		<1	1	1
Tin	ppm	ASTM D5185m	>20	0	0	0
Vanadium	ppm	ASTM D5185m		0	0	0
Cadmium	ppm	ASTM D5185m		0	0	0
	PP			-		-
ADDITIVES		method	limit/base	current	history1	history2
Boron	ppm	ASTM D5185m	5	<1	0	0
Barium	ppm	ASTM D5185m	5	2	0	0
Molybdenum	ppm	ASTM D5185m	5	1	<1	<1
Manganese	ppm	ASTM D5185m		0	<1	0
Magnesium	ppm	ASTM D5185m	25	6	6	8
Calcium	ppm	ASTM D5185m	200	74	71	68
Phosphorus	ppm	ASTM D5185m	300	352	350	364
Zinc	ppm	ASTM D5185m	370	457	453	453
Sulfur	ppm	ASTM D5185m	2500	996	1076	771
CONTAMINANTS	3	method	limit/base	current	history1	history2
Silicon	ppm	ASTM D5185m	>15	<1	0	<1
Sodium	ppm	ASTM D5185m		0	<1	2
Potassium	ppm	ASTM D5185m	>20	<1	<1	1
FLUID CLEANLIN	IESS	method	limit/base	current	history1	history2
Particles >4µm		ASTM D7647	>640	184	284	241
Particles >6µm		ASTM D7647	>160	56	101	74
Particles >14µm		ASTM D7647	>20	6	13	9
Particles >21µm		ASTM D7647	>4	2	3	2
Particles >38µm		ASTM D7647	>3	0	0	0
Particles >71µm		ASTM D7647	>3	0	0	0
Oil Cleanliness		ISO 4406 (c)	>16/14/11	15/13/10	15/14/11	15/13/10
FLUID DEGRADA		method	limit/base	current	history1	history2
Acid Number (AN)	mg KOH/g	ASTM D8045	0.57	0.26	0.28	0.24



OIL ANALYSIS REPORT



VISUAL		method	limit/base	current	history1	history2
White Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Yellow Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Precipitate	scalar	*Visual	NONE	NONE	NONE	NONE
Silt	scalar	*Visual	NONE	NONE	NONE	NONE
Debris	scalar	*Visual	NONE	NONE	NONE	NONE
Sand/Dirt	scalar	*Visual	NONE	NONE	NONE	NONE
Appearance	scalar	*Visual	NORML	NORML	NORML	NORML
Odor	scalar	*Visual	NORML	NORML	NORML	NORML
Emulsified Water	scalar	*Visual	>0.05	NEG	NEG	NEG
Free Water	scalar	*Visual		NEG	NEG	NEG
FLUID PROPERTIES		method	limit/base	current	history1	history2
Visc @ 40°C	<u>.</u>		~~	07 F		
130 @ 10 0	cSt	ASTM D445	68	67.5	67.8	69.1
SAMPLE IMAGES		ASTM D445 method	68 limit/base	current	67.8 history1	69.1 history2
-						

Statements of conformity to specifications are based on the simple acceptance decision rule (JCGM 106:2012)

Contact/Location: Ted Hudson - JMHCRY