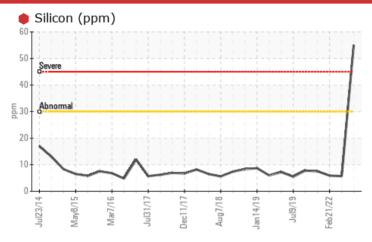


PROBLEM SUMMARY


OKLAHOMA/105 08.90 [OKLAHOMA^105]

Diesel Engine

DIESEL ENGINE OIL SAE 15W40 (--- GAL)

Sample Rating Trend DIRT

COMPONENT CONDITION SUMMARY

RECOMMENDATION

We advise that you check the air filter, air induction system, and any areas where dirt may enter the component. Oil and filter change at the time of sampling has been noted. We recommend an early resample to monitor this condition.

PROBLEMATIC TEST RESULTS							
Sample Status				SEVERE	NORMAL	NORMAL	
Silicon	ppm	ASTM D5185m	>30	5 5	6	6	

Customer Id: SHEWIC Sample No.: WC0808024 Lab Number: 05923181 Test Package: CONST

To manage this report scan the QR code

To discuss the diagnosis or test data:

Don Baldridge +1 don.b505@comcast.net

To change component or sample information: Customer Service +1 1-800-237-1369 customerservice@wearcheck.com

RECOMMENDED ACTIONS						
Action	Status	Date	Done By	Description		
Change Fluid			?	Oil and filter change at the time of sampling has been noted.		
Change Filter			?	Oil and filter change at the time of sampling has been noted.		
Resample			?	We recommend an early resample to monitor this condition.		
Check Dirt Access			?	We advise that you check the air filter, air induction system, and any areas where dirt may enter the component.		

HISTORICAL DIAGNOSIS

17 Oct 2022 Diag: Don Baldridge

NORMAL

Resample at the next service interval to monitor. All component wear rates are normal. There is no indication of any contamination in the oil. The BN result indicates that there is suitable alkalinity remaining in the oil. The condition of the oil is suitable for further service.

view report

21 Feb 2022 Diag: Wes Davis

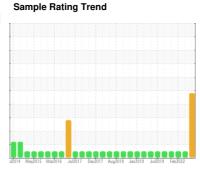
NORMAL

Resample at the next service interval to monitor. Please specify the component make and model with your next sample. All component wear rates are normal. There is no indication of any contamination in the oil. The BN result indicates that there is suitable alkalinity remaining in the oil. The condition of the oil is suitable for further service.

30 Apr 2021 Diag: Wes Davis

NORMAL

Resample at the next service interval to monitor. Please specify the component make and model with your next sample. All component wear rates are normal. There is no indication of any contamination in the oil. The BN result indicates that there is suitable alkalinity remaining in the oil. The condition of the oil is suitable for further service.



OIL ANALYSIS REPORT

OKLAHOMA/105 08.90 [OKLAHOMA^105]

Diesel Engine

DIESEL ENGINE OIL SAE 15W40 (--- GAL)

DIAGNOSIS

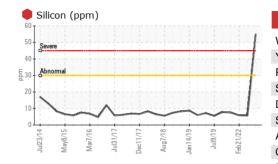
Recommendation

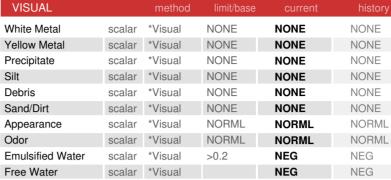
We advise that you check the air filter, air induction system, and any areas where dirt may enter the component. Oil and filter change at the time of sampling has been noted. We recommend an early resample to monitor this condition.

All component wear rates are normal.

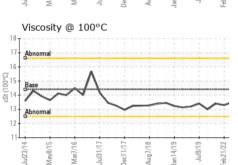
Contamination

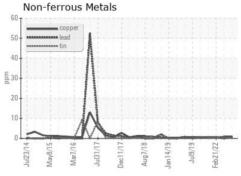
Elemental level of silicon (Si) above normal.

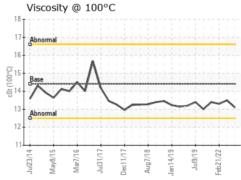

Fluid Condition

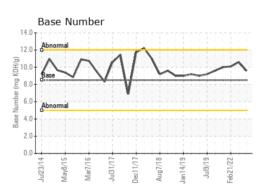

The BN result indicates that there is suitable alkalinity remaining in the oil.

CAMPI E WEST	A TI 64-			2017 Aug2018 Jan2019 Jul2019		
SAMPLE INFORMA	MOIT	method	limit/base	current	history1	history2
Sample Number		Client Info		WC0808024	WC0741114	WC0634241
Sample Date		Client Info		08 Aug 2023	17 Oct 2022	21 Feb 2022
Machine Age	hrs	Client Info		12712	12154	11500
Oil Age	hrs	Client Info		600	0	265
Oil Changed		Client Info		Changed	N/A	Changed
Sample Status				SEVERE	NORMAL	NORMAL
CONTAMINATION		method	limit/base	current	history1	history2
Fuel		WC Method	>5	<1.0	<1.0	<1.0
Glycol		WC Method		NEG	NEG	NEG
WEAR METALS		method	limit/base	current	history1	history2
Iron	ppm	ASTM D5185m	>110	10	7	5
Chromium	ppm	ASTM D5185m	>4	<1	<1	<1
Nickel	ppm	ASTM D5185m	>2	0	0	<1
Titanium	ppm	ASTM D5185m		0	0	<1
Silver	ppm	ASTM D5185m	>2	<1	<1	1
Aluminum	ppm	ASTM D5185m	>25	2	2	1
Lead	ppm	ASTM D5185m	>45	<1	0	<1
_	ppm	ASTM D5185m	>85	<1	<1	<1
	ppm	ASTM D5185m	>4	<1	<1	<1
	ppm	ASTM D5185m				<1
	ppm	ASTM D5185m		0	<1	<1
	ppm	ASTM D5185m		0	0	<1
ADDITIVES		method	limit/base	current	history1	history2
_	nnm	ASTM D5185m	250	50	40	70
	ppm	ASTM D5185m	10	2	0	0
	ppm	ASTM D5185m	100	47	40	21
	ppm		100		<1	<1
	ppm	ASTM D5185m	450	<1		
	ppm	ASTM D5185m	450	523	461	637
	ppm	ASTM D5185m	3000	1869	1776	1590
	ppm	ASTM D5185m	1150	812	764	789
	ppm	ASTM D5185m	1350	985	949	911
Sulfur	ppm	ASTM D5185m	4250	2909	3106	2644
CONTAMINANTS		method	limit/base	current	history1	history2
	ppm		>30	5 5	6	6
	ppm	ASTM D5185m	>158	0	26	3
Potassium	ppm	ASTM D5185m	>20	6	4	2
INFRA-RED		method	limit/base	current	history1	history2
Soot %	%	*ASTM D7844	>3	0.5	0.3	0.2
Nitration	Abs/cm	*ASTM D7624	>20	8.8	9.0	8.4
Sulfation	Abs/.1mm	*ASTM D7415	>30	23.3	24.3	22.3
FLUID DEGRADAT	ION	method	limit/base	current	history1	history2
Oxidation	Abs/.1mm	*ASTM D7414	>25	21.4	21.4	18.4
Base Number (BN)	mg KOH/g	ASTM D2896	8.5	9.6	10.6	10.1
(=)	0 3			-		


OIL ANALYSIS REPORT


Base Number
(612.0 Abnormal 6.0 6.0 Abnormal 2.0 Abnorma
8.0 T
Abnormal
9 4.0
0.0
Jul23/14 May8/15 Mar7/16 Jul31/17 Aug7/18 Jan14/19 Jul9/19
Juli2 May Juli3 Augusto Juni1 Juni1


FLUID PROPERTIES		method	limit/base	current	history1	history2
Visc @ 100°C	cSt	ASTM D445	14.4	13.1	13.5	13.3



Ferrous Alloys 60

GRAPHS

Laboratory Sample No. Lab Number **Unique Number**

: WC0808024 : 05923181 : 10603128

: WearCheck USA - 501 Madison Ave., Cary, NC 27513 Received Diagnosed

: 14 Aug 2023 : 15 Aug 2023 Diagnostician : Don Baldridge

Test Package : CONST (Additional Tests: TBN)

To discuss this sample report, contact Customer Service at 1-800-237-1369. * - Denotes test methods that are outside of the ISO 17025 scope of accreditation.

Statements of conformity to specifications are based on the simple acceptance decision rule (JCGM 106:2012)

SHERWOOD CONSTRUCTION CO INC

3219 WEST MAY ST WICHITA, KS US 67213

NONE

NONE

NONE

NONE

NONE

NONE

NORML

NEG

NEG

NORML

Contact: DOUG KING doug.king@sherwood.net

T: (316)617-3161 F: x: