

OIL ANALYSIS REPORT

Sample Rating Trend

NORMAL

FES TYSRUSFP HS-6 (S/N 05191012)

Refrigeration Compressor Fluid USPI ALT-68 SC (--- GAL)

DIAGNOSIS

Recommendation

Resample at the next service interval to monitor.

Wear

All component wear rates are normal.

Contamination

There is no indication of any contamination in the oil. The amount and size of particulates present in the system are acceptable.

Fluid Condition

The AN level is acceptable for this fluid. The condition of the oil is suitable for further service.

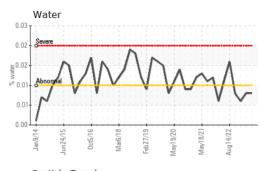
in the second				

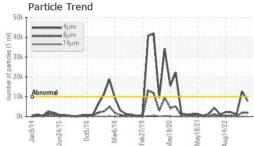
SAMPLE INFORM	IATI <u>ON</u>	method	limit/base	current	history1	history2
Sample Number		Client Info		USP0000635	USP246870	USP246871
Sample Date		Client Info		16 Aug 2023	01 May 2023	06 Feb 2023
Machine Age	hrs	Client Info		0	0	0
Oil Age	hrs	Client Info		0	0	0
Oil Changed		Client Info		N/A	N/A	N/A
Sample Status				NORMAL	ATTENTION	NORMAL
WEAR METALS		method	limit/base	current	history1	history2
Iron	ppm	ASTM D5185m	>8	2	2	3
Chromium	ppm	ASTM D5185m	>2	0	0	0
Nickel	ppm	ASTM D5185m		0	0	0
Titanium	ppm	ASTM D5185m		<1	0	0
Silver	ppm	ASTM D5185m	>2	0	0	0
Aluminum	ppm	ASTM D5185m	>3	0	0	1
Lead	ppm	ASTM D5185m	>2	0	0	0
Copper	ppm	ASTM D5185m	>8	0	<1	0
Tin	ppm	ASTM D5185m	>4	0	0	0
Vanadium	ppm	ASTM D5185m		<1	0	0
Cadmium	ppm	ASTM D5185m		<1	0	0
ADDITIVES		method	limit/base	current	history1	history2
Boron	ppm	ASTM D5185m		0	0	0
Barium	ppm	ASTM D5185m		0	0	0
Molybdenum	ppm	ASTM D5185m		0	0	0
Manganese	ppm	ASTM D5185m		<1	0	0
Magnesium	ppm	ASTM D5185m		0	<1	0
Calcium	ppm	ASTM D5185m		0	0	1
Phosphorus	ppm	ASTM D5185m		0	0	<1
Zinc	ppm	ASTM D5185m		0	2	0
Sulfur	ppm	ASTM D5185m	50	0	17	0
CONTAMINANTS		method	limit/base	current	history1	history2
Silicon	ppm	ASTM D5185m	>15	3	3	4
Sodium	ppm	ASTM D5185m		<1	0	0
Potassium	ppm	ASTM D5185m	>20	2	<1	0
Water	%	ASTM D6304	>0.01	0.008	0.008	0.006
ppm Water	ppm	ASTM D6304	>100	81.8	86.7	62.4
FLUID CLEANLIN	IESS	method	limit/base	current	history1	history2
Particles >4µm		ASTM D7647	>10000	7835	12668	1132
Particles >6µm		ASTM D7647	>2500	1935	1952	310
Particles >14µm		ASTM D7647	>320	52	27	13
Particles >21µm		ASTM D7647	>80	7	4	3
Particles >38µm		ASTM D7647	>20	0	0	0
Particles >71µm		ASTM D7647	>4	0	0	0
Oil Cleanliness		ISO 4406 (c)	>20/18/15	20/18/13	1 21/18/12	17/15/11

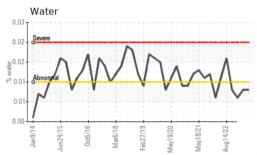
Acid Number (AN)

FLUID DEGRADATION

mg KOH/g ASTM D974 0.005


0.015


0.015


0.015

OIL ANALYSIS REPORT

7

7

cSt (40°C)

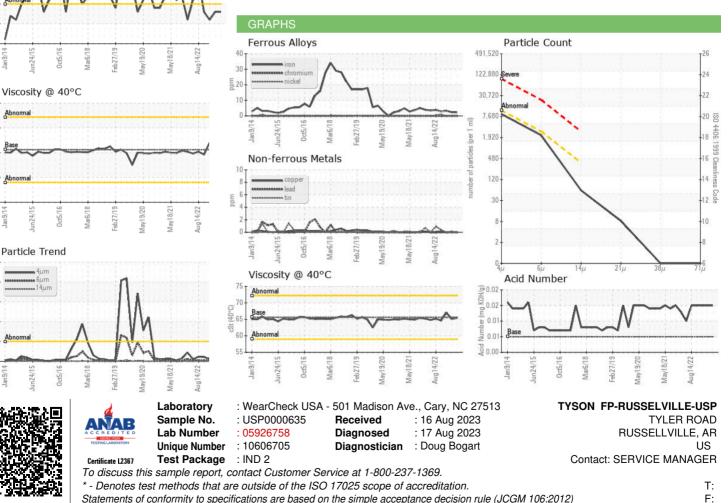
60

55

50

Ê 40

· 301


5 20

Ab

1/6 up

Bottom

Statements of conformity to specifications are based on the simple acceptance decision rule (JCGM 106:2012)