

OIL ANALYSIS REPORT

Area HINO [600380375] Machine Id 42WEA81845

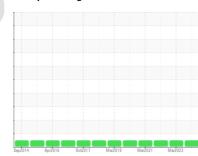
Component Hydraulic System Fluid SHELL TELLUS ARTIC 32 (--- LTR)

DIAGNOSIS

Recommendation

Resample at the next service interval to monitor.

Wear


All component wear rates are normal.

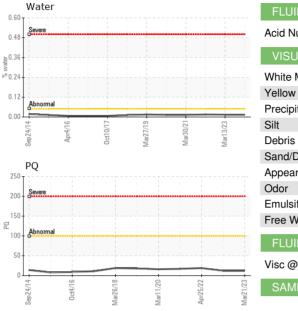
Contamination

The amount and size of particulates present in the system are acceptable. There is no indication of any contamination in the oil.

Fluid Condition

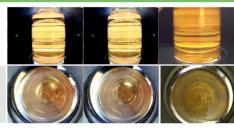
The AN level is acceptable for this fluid. The condition of the oil is suitable for further service.

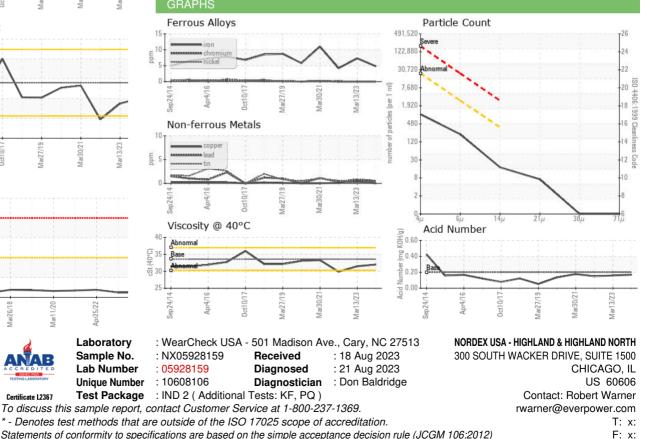
Sample Rating Trend



NORMAL

		Sep2014	Apr2016 Oct2017	Mar2019 Mar2021 N	lar2023	
SAMPLE INFORM	IATION	method	limit/base	current	history1	history2
Sample Number		Client Info		NX05928159	NX05928158	NX05602805
Sample Date		Client Info		21 Mar 2023	13 Mar 2023	25 Apr 2022
Machine Age	mths	Client Info		0	0	0
Oil Age	mths	Client Info		0	0	0
Oil Changed		Client Info		N/A	N/A	N/A
Sample Status				NORMAL	NORMAL	NORMAL
WEAR METALS		method	limit/base	current	history1	history2
PQ		ASTM D8184		12	12	19
Iron	ppm	ASTM D5185m	>20	5	7	4
Chromium	ppm	ASTM D5185m	>20	0	0	0
Nickel	ppm	ASTM D5185m	>20	0	0	<1
Titanium	ppm	ASTM D5185m		0	0	0
Silver	ppm	ASTM D5185m		0	0	<1
Aluminum	ppm	ASTM D5185m	>20	<1	<1	<1
Lead	ppm	ASTM D5185m	>20	<1	<1	<1
Copper	ppm	ASTM D5185m	>20	0	<1	<1
Tin	ppm	ASTM D5185m	>20	<1	<1	<1
Antimony	ppm	ASTM D5185m				
Vanadium	ppm	ASTM D5185m		0	0	0
Cadmium	ppm	ASTM D5185m		0	0	0
ADDITIVES		method	limit/base	current	history1	history2
Boron	ppm	ASTM D5185m	5	0	0	<1
Barium	ppm	ASTM D5185m	0	0	0	0
Molybdenum	ppm	ASTM D5185m	0	0	0	0
Manganese	ppm	ASTM D5185m	0	0	0	0
Magnesium	ppm	ASTM D5185m	0	<1	<1	0
Calcium	ppm	ASTM D5185m	5	<1	6	0
Phosphorus	ppm	ASTM D5185m	600	444	473	583
Zinc	ppm	ASTM D5185m	50	83	83	69
Sulfur	ppm	ASTM D5185m	900	676	728	580
CONTAMINANTS		method	limit/base	current	history1	history2
Silicon	ppm	ASTM D5185m	>15	4	3	4
Sodium	ppm	ASTM D5185m		0	0	0
Potassium	ppm	ASTM D5185m	>20	<1	0	0
Water	%	ASTM D6304	>0.05	0.014	0.014	0.015
ppm Water	ppm	ASTM D6304	>500	143.0	148.4	157.9
FLUID CLEANLIN	IESS	method	limit/base	current	history1	history2
Particles >4µm		ASTM D7647	>20000	870	5732	7539
Particles >6µm		ASTM D7647	>2500	189	958	858
Particles >14µm		ASTM D7647	>320	15	42	40
Particles >21µm		ASTM D7647		6	10	9
Particles >38µm		ASTM D7647	>20	0	0	0
Particles >71µm		ASTM D7647	>4	0	0	0
Oil Cleanliness		ISO 4406 (c)	>21/18/15	17/15/11	20/17/13	20/17/12
		. /				




OIL ANALYSIS REPORT

		_	_		
Particle	e Trend				Color
The 20k	14μm			\sim	Bottom
0k 0k 14	Apr4/16	0ct10/17	Mar27/19	Mar30/21 Mar13/23	GRAF
38 36 34 Base 334 32	ty @ 40'	°c	_		Ferrou
28 Hithouse	Apr4/16	0ct10/17 +	Mar27/19 +	Mar30/21	Non-fe
250 200 Severe 150 Abnormal	0ct4/16	Mar26/18	1/20	Apr25/22	40 (3)35 (3)35 (3)40 (3)40 (3)40 (3)40 (3)40 (3)40 (3)40 (3)40 (3)40 (3)40 (3)40 (4)4) (4)40 (4)40 (4)4) (4)40 (4)4) (4)40) (4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(
		Certifica To dis * - De	notes tes	Laboratory Sample No. Lab Number Unique Number Test Package s sample report, st methods that a sonformity to spec	IND 2 (contact Cu are outside

FLUID DEGRADATION		method	limit/base	current	history1	history2
Acid Number (AN)	mg KOH/g	ASTM D8045	0.20	0.17	0.16	0.15
VISUAL		method	limit/base	current	history1	history2
White Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Yellow Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Precipitate	scalar	*Visual	NONE	NONE	NONE	NONE
Silt	scalar	*Visual	NONE	NONE	NONE	NONE
Debris	scalar	*Visual	NONE	NONE	NONE	NONE
Sand/Dirt	scalar	*Visual	NONE	NONE	NONE	NONE
Appearance	scalar	*Visual	NORML	NORML	NORML	NORML
Odor	scalar	*Visual	NORML	NORML	NORML	NORML
Emulsified Water	scalar	*Visual	>0.05	NEG	NEG	NEG
Free Water	scalar	*Visual		NEG	NEG	NEG
FLUID PROPERT	IES	method	limit/base	current	history1	history2
Visc @ 40°C	cSt	ASTM D445	33.6	32.0	31.5	29.9
SAMPLE IMAGES	3	method	limit/base	current	history1	history2
			_			

Statements of conformity to specifications are based on the simple acceptance decision rule (JCGM 106:2012)

Contact/Location: Robert Warner - NORHIG