

OIL ANALYSIS REPORT

Sample Rating Trend

FES SSC-3 (S/N 19L019333)

Compressor Fluid CAMCO 717 SC (70 GAL)

DIAGNOSIS

Recommendation

Resample at the next service interval to monitor.

Wear

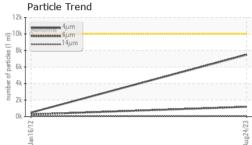
All component wear rates are normal.

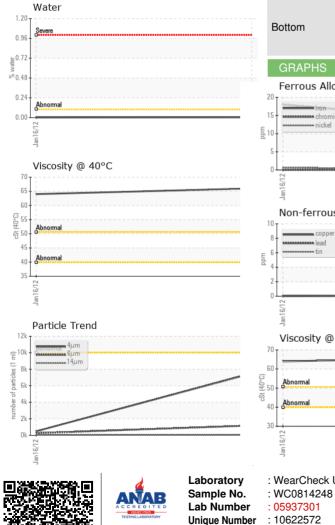
Contamination

There is no indication of any contamination in the oil. The amount and size of particulates present in the system are acceptable.

Fluid Condition


The AN level is acceptable for this fluid. The condition of the oil is suitable for further service.


			Jan2012	Aug2023		
SAMPLE INFORM	MATION	method	limit/base	current	history1	history2
Sample Number		Client Info		WC0814248	USP002098	
Sample Date		Client Info		24 Aug 2023	16 Jan 2012	
Machine Age	hrs	Client Info		59162	7000	
Oil Age	hrs	Client Info		59162	7000	
Oil Changed		Client Info		Not Changd	N/A	
Sample Status				NORMAL	NORMAL	
WEAR METALS		method	limit/base	current	history1	history2
Iron	ppm	ASTM D5185m	>50	13	18	
Chromium	ppm	ASTM D5185m	>10	<1	0	
Nickel	ppm	ASTM D5185m		0	<1	
Titanium	ppm	ASTM D5185m		<1	0	
Silver	ppm	ASTM D5185m		0	0	
Aluminum	ppm	ASTM D5185m	>25	0	0	
Lead	ppm	ASTM D5185m	>25	۰ <1	0	
Copper	ppm	ASTM D5185m		<1	0	
Tin	ppm	ASTM D5185m	>15	<1	0	
Antimony	ppm	ASTM D5185m			0	
Vanadium	ppm	ASTM D5185m		<1	0	
Cadmium	ppm	ASTM D5185m		<1	0	
	ppiii					
ADDITIVES		method	limit/base	current	history1	history2
Boron	ppm	ASTM D5185m		0	0	
Barium	ppm	ASTM D5185m		0	0	
Molybdenum	ppm	ASTM D5185m		0	1	
Manganese	ppm	ASTM D5185m		<1	0	
Magnesium	ppm	ASTM D5185m		6	0	
Calcium	ppm	ASTM D5185m		0	0	
Phosphorus	ppm	ASTM D5185m		1	0	
Zinc	ppm	ASTM D5185m		13	0	
Sulfur	ppm	ASTM D5185m		6	28	
CONTAMINANTS	5	method	limit/base	current	history1	history2
Silicon	ppm	ASTM D5185m	>25	2	1	
Sodium	ppm	ASTM D5185m		<1	<1	
Potassium	ppm	ASTM D5185m	>20	2	5	
Water	%	ASTM D6304	>0.1	0.004	0.002	
ppm Water					20	
	ppm	ASTM D6304	>1000	44.8	20	
		ASTM D6304 method	>1000 limit/base	44.8 current	history1	history2
FLUID CLEANLIN Particles >4µm				-		
Particles >4µm		method	limit/base	current	history1	history2
Particles >4µm Particles >6µm		method ASTM D7647	limit/base >10000	current 7493	history1 487	history2
Particles >4μm Particles >6μm Particles >14μm		method ASTM D7647 ASTM D7647	limit/base >10000 >2500 >320	current 7493 1181	history1 487 265	history2
Particles >4μm Particles >6μm Particles >14μm Particles >21μm		method ASTM D7647 ASTM D7647 ASTM D7647	limit/base >10000 >2500 >320	current 7493 1181 41	history1 487 265 45	history2
		method ASTM D7647 ASTM D7647 ASTM D7647 ASTM D7647	limit/base >10000 >2500 >320 >80 >20	current 7493 1181 41 13	history1 487 265 45 15	history2
Particles >4µm Particles >6µm Particles >14µm Particles >21µm Particles >38µm		method ASTM D7647 ASTM D7647 ASTM D7647 ASTM D7647 ASTM D7647	limit/base >10000 >2500 >320 >80 >20	current 7493 1181 41 13 1	history1 487 265 45 15 2	history2
Particles >4µm Particles >6µm Particles >14µm Particles >21µm Particles >38µm Particles >71µm	NESS	method ASTM D7647 ASTM D7647 ASTM D7647 ASTM D7647 ASTM D7647 ASTM D7647	limit/base >10000 >2500 >320 >80 >20 >4	current 7493 1181 41 13 1 0	history1 487 265 45 15 2 0	history2
Particles >4µm Particles >6µm Particles >14µm Particles >21µm Particles >38µm Particles >71µm Oil Cleanliness	NESS	method ASTM D7647 ASTM D7647 ASTM D7647 ASTM D7647 ASTM D7647 ISO 4406 (c)	limit/base >10000 >2500 >320 >80 >20 >20 >4 >20/18/15	Current 7493 1181 41 13 1 0 20/17/13	history1 487 265 45 15 2 0 16/15/13	history2

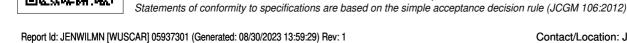

Report Id: JENWILMN [WUSCAR] 05937301 (Generated: 08/30/2023 13:59:29) Rev: 1

OIL ANALYSIS REPORT

Certificate L2367

Yellow Metal scalar 'Visual NONE NONE NONE Precipitate scalar 'Visual NONE NONE NONE Sitt scalar 'Visual NONE NONE NONE Debris scalar 'Visual NONE NONE NONE Sand/Dirt scalar 'Visual NONE NONE NONE Appearance scalar 'Visual NORML NORML NORML Emusified Water scalar 'Visual >0.1 NEG NEG Free Water scalar 'Visual >0.1 NEG NEG Free Water scalar 'Visual >0.1 NEG NEG FLUID PROPERTIES method imit/base current history1 history2 Visc @ 40°C cSt ASTM D445 66.0 64.00 SAMPLE IMAGES method imit/base current history1 history2 Color no image no image Retrous Alloys Ferrous Metals of graph Nerrous Metals Terrous Metals Terrous Metals Nerrous Metals Nerrous Metals Nerrous Metals Terrous Metals							
Yellow Metal scalar 'Visual NONE NONE NONE Precipitate scalar 'Visual NONE NONE NONE Sitt scalar 'Visual NONE NONE NONE Sand/Dirt scalar 'Visual NONE NONE NONE Appearance scalar 'Visual NORML NORML NORML Codor scalar 'Visual NORML NORML NORML NORML Emulsified Water scalar 'Visual NORML NORML NORML NORML Erree Water scalar 'Visual So.1 NEG NEG Free Water scalar 'Visual So.1 NEG NEG FLUID PROPERTIES method Imit/base current history1 history2 Visc @ 40°C cSt ASTM D445 66.0 64.00 SAMPLE IMAGES method Imit/base current history1 history2 Color no image no image 0 mo image no image no image 0 mo image no image no image 0 mo image no image no image no image 0 mo image no imag	VISUAL		method	limit/base	current	history1	history2
Precipitate scalar 'Visual NONE NONE NONE Sitt scalar 'Visual NONE NONE NONE Debris scalar 'Visual NONE NONE NONE Appearance scalar 'Visual NORML NORML NORML NORML Codor scalar 'Visual NORML NORML NORML NORML Prec Water scalar 'Visual NORML NORML NORML NORML FLUID PROPERTIES method imit/base current history1 history2 Visc @ 40°C cSt ASTM D445 66.0 64.00 SAMPLE IMAGES method imit/base current history1 history2 Color	White Metal	scalar	*Visual	NONE	NONE	NONE	
Sitt scatar Visual NONE NONE NONE Debris scalar Visual NONE NONE NONE Sand/Dirt scalar Visual NONE NONE NONE Sand/Dirt scalar Visual NORML NORML NORML Odor scalar Visual NORML NORML NORML NORML Erusisfied Water scalar Visual NORML NORML NORML NORML Free Water scalar Visual Sol.1 NEG NEG FLUID PROPERTIES method imit/base current history1 history2 Visc @ 40°C cSt ASTM D445 66.0 64.00 SAMPLE IMAGES method imit/base current history1 history2 Color no image no image Retrows Alloys Viscosity @ 40°C Company of the stale	Yellow Metal	scalar	*Visual	NONE	NONE	NONE	
Debris scalar 'Visual NONE NONE NONE Sand/Dirit scalar 'Visual NONE NONE NONE Appearance scalar 'Visual NORML NORML NORML Emulsified Water scalar 'Visual NORML NORML NORML NORML Emulsified Water scalar 'Visual >0.1 NEG NEG Free Water scalar 'Visual >0.1 NEG NEG FLUID PROPERTIES method imit/base current history1 history2 Visc @ 40°C cSt ASTM D445 66.0 64.00 SAMPLE IMAGES method imit/base current history1 history2 Color no image no image Bottom no image no image Ferrous Alloys Ferrous Alloys Sample during and the scalar '' ViscoSty @ 40°C Sample during and the scalar '' ViscoSty @ 40°C Sample during and the scalar '' Sample d	Precipitate	scalar	*Visual	NONE	NONE	NONE	
Sand/Dirit scalar "Visual NONE NONE NONE NONE Appearance scalar "Visual NORML NORML NORML NORML Emulsified Water scalar "Visual NORML NORML NORML NORML Free Water scalar "Visual NORML NORML NORML NORML NORML Fee Water scalar "Visual NORML NORML NORML NORML NORML FEUID PROPERTIES method limit/base current history1 history2 Visc @ 40°C cSt ASTM D445 66.0 64.00 SAMPLE IMAGES method limit/base current history1 history2 Color no image no image Bottom Particle Count Ferrous Alloys Ferrous Alloys Viscosity @ 40°C Viscosity @ 40°C Ferrous Metals Ferrous Metals Ferrous Metals Ferrous Metals Ferrous Metals Ferrous Metals Ferrous Metals Ferrous Metals Ferrous Metals	Silt	scalar	*Visual	NONE	NONE	NONE	
Appearance scalar *Visual NORML NORML NORML NORML Odor scalar *Visual NORML NORML NORML Emulsified Water scalar *Visual >0.1 NEG NEG Free Water scalar *Visual >0.1 NEG NEG FLUID PROPERTIES method imit/base current history1 history2 Visc @ 40°C cSt ASTM D445 66.0 64.00 SAMPLE IMAGES method imit/base current history1 history2 Color no image no image Bottom no image no image GRAPHS Ferrous Alloys On -ferrous Metals On -ferrous Metals On -ferrous Metals Output (@ 40°C Output (@ 40°C) Color ViscoSity @ 40°C	Debris				-		
Odor scalar *Visual NORML NORML NORML Emulsified Water scalar *Visual >0.1 NEG Free Water scalar *Visual >0.1 NEG Fue Water scalar *Visual >0.1 NEG NEG Fue Water scalar *Visual NEG NEG Fue Water scalar *Visual NEG NEG Fue Water scalar *Visual NEG NEG Fue Water scalar MEG NEG SAMPLE IMAGES method imit/base current history1 history2 Color Imit/base current history1 history2 Bottom Imit/base Particle Count Imit/base no image no image Non-ferrous Metals Imit/ferrous Imit/ferrous <th>Sand/Dirt</th> <th></th> <th></th> <th></th> <th>-</th> <th></th> <th></th>	Sand/Dirt				-		
Emulsified Water scalar 'Visual >0.1 NEG NEG Free Water scalar 'Visual NEG NEG FLUID PROPERTIES method imit/base current history1 history2 Visc @ 40°C cSt ASTM D445 66.0 64.00 SAMPLE IMAGES method imit/base current history1 history2 Color no image no image Bottom no image no image Reference Alloys Particle Count 12,200 no image Non-ferrous Metals 12,200 no image 10,200 no ima							
Free Water scalar *Visual NEG NEG FLUID PROPERTIES method limit/base current history1 history2 Visc @ 40°C cSt ASTM D445 66.0 64.00 SAMPLE IMAGES method limit/base current history1 history2 Color imit/base current no image no image Bottom imit/base current history1 history2 GRAPHS Ferrous Alloys Particle Count Imit/base Particle Count of under the standard of under the standard of under the standard of under the standard of under the standard of under the standard of under the standard of under the standard of under the standard of under the standard of under the standard of under the standard of under the standard of under the standard of under the standard of under the standard of under the standard of under the standard of under the standard of under the standard of under the standard of under the standard of under the standard of under the standard of under the standard of under the standard of under the standard of under the standard					-		
FLUID PROPERTIES method limit/base current history1 history2 Visc @ 40°C cSt ASTM D445 66.0 64.00 SAMPLE IMAGES method limit/base current history1 history2 Color imit/base current history1 history2 Bottom imit/base current history1 history2 GRAPHS remove and				>0.1			
Visc @ 40°C cSt ASTM D445 66.0 64.00 SAMPLE IMAGES method limit/base current history1 history2 Color no image no image Bottom no image no image GRAPHS Ferrous Alloys Ono ferrous Metals Ono ferrou							
SAMPLE IMAGES method limit/base current history1 history2 Color no image no image Bottom no image no image CRAPHS Ferrous Alloys or mickel Mon-ferrous Metals or used to be a service of the servi	FLUID PROPERT	TIES	method	limit/base	current	history1	history2
Color no image no image Bottom 0 image no image RAPHS GRAPHS Ferrous Alloys On-ferrous Metals Output Viscosity @ 40°C Output	Visc @ 40°C		ASTM D445		66.0	64.00	
Bottom no image no image RAPHS Ferrous Alloys Particle Count 122,880 122,890 122,890 122,890 122,890 122,890 122,890 122,890 122,990 1	SAMPLE IMAGES	3	method	limit/base	current	history1	history2
GRAPHS Ferrous Alloys	Color					no image	no image
Ferrous Alloys Particle Count Particle Count	Bottom					no image	no image
Viscosity @ 40°C	GRAPHS						
Viscosity @ 40°C				401.5			20
Non-ferrous Metals 1,920 Image: Comper time 1,920 <th>iron</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>1²⁰</th>	iron						1 ²⁰
Solution of the second	management nickel			122,8	80 Severe		-24
Viscosity @ 40°C	0-			30,7	20		-22
$\frac{1}{10}$	5				Abnormal		
Viscosity @ 40°C Abnormal Ab					80		-20 3
Viscosity @ 40°C Abnomal Abnomal d_{10}	an 16/			1/1 1/2	20-	•	-18
Viscosity @ 40°C Abnormal Ab	-	c		Au ticles (80		10
Viscosity @ 40°C Abnomal Abnomal dbnomal		5		of part		1	
Viscosity @ 40°C Abnomal Abnomal d_{10}	8 +			mper	20		-14 g
Viscosity @ 40°C Abnomal b_{n} b_{n} b					30 -		
Viscosity @ 40°C					8	1	10
Viscosity @ 40°C Abnomal Abnomal Abnomal						/	10
Viscosity @ 40°C $4\mu 4\mu 5\mu 14\mu 21\mu 38\mu 71\mu$ Acid Number $4\mu 6\mu 14\mu 21\mu 38\mu 71\mu$ Acid Number $6\mu 6\mu 14\mu 21\mu 38\mu 71\mu$	n16/12			g24/23	2-		
				Aui	4µ 6µ	14µ 21µ	38µ 71µ
an 16/12				- 0			
art 16/12 and 16/12	0			(B)HO	02		
ari 16/12	Abnormal			y Bul	01		
an 16/12	Abnormal			per 0			
an 16/12 1000 A and 16/12 1000 A and 16/12 12 1000 A and 16/12 12 12 10000 A and 16/12 12 12 10000 A and 100000 A and 1000000 A and 10000000 A and 1000000 A and 10000000 A and 10000000 A and 10000000 A and 1000000000000000000000000000000000000				ž 0.	.01		
lan 16 				cid			
	10			/23			

: WearCheck USA - 501 Madison Ave., Cary, NC 27513 JENNIE-O TURKEY STORE - PRECISION : 29 Aug 2023 1530 30TH ST SW, WILLMAR AVE PLT 4 : 30 Aug 2023 WILLMAR, MN Diagnostician : Doug Bogart US 56201 Contact: JEFF BERGMAN jjbergman@j-ots.com T: (320)231-7148 F: (320)231-7169


Received

Test Package : IND 2 (Additional Tests: KF, PrtCount)

To discuss this sample report, contact Customer Service at 1-800-237-1369.

* - Denotes test methods that are outside of the ISO 17025 scope of accreditation.

Diagnosed

Contact/Location: JEFF BERGMAN - JENWILMN

Page 2 of 2