

PROBLEM SUMMARY

Machine Id FES 2 (S/N 05411013) Component

Refrigeration Compressor Fluid USPI HF SYN 220 (--- QTS)

COMPONENT CONDITION SUMMARY

RECOMMENDATION

Resample at the next service interval to monitor.

PROBLEMATIC TEST RESULTS							
Sample Status				MARGINAL	MARGINAL	MARGINAL	
Water	%	ASTM D6304	>0.01	0.038	▲ 0.049	0.013	
ppm Water	ppm	ASTM D6304	>100	A 388.3	4 97.2	1 39.6	

Customer Id: TYSSPRPP Sample No.: USPM29435 Lab Number: 05938931 Test Package: IND 2

To manage this report scan the QR code

To discuss the diagnosis or test data: Doug Bogart +1 (800)237-1369 x4016 <u>dougb@wearcheckusa.com</u>

To change component or sample information: Customer Service +1 1-800-237-1369 <u>customerservice@wearcheck.com</u>

RECOMMENDED ACTIONS

There are no recommended actions for this sample.

HISTORICAL DIAGNOSIS

24 May 2023 Diag: Doug Bogart

Resample at the next service interval to monitor.All component wear rates are normal. There is a light concentration of water present in the oil. The amount and size of particulates present in the system are acceptable. The AN level is acceptable for this fluid. The condition of the oil is suitable for further service.

28 Feb 2023 Diag: Doug Bogart

27 Oct 2022 Diag: Doug Bogart

Resample at the next service interval to monitor.All component wear rates are normal. There is a trace of moisture present in the oil. The amount and size of particulates present in the system are acceptable. The AN level is acceptable for this fluid. The condition of the oil is suitable for further service.

NORMAL

No corrective action is recommended at this time. Resample at the next service interval to monitor.All component wear rates are normal. There is a trace of moisture present in the oil. The amount and size of particulates present in the system are acceptable. The AN level is acceptable for this fluid. The condition of the oil is suitable for further service.

Report Id: TYSSPRPP [WUSCAR] 05938931 (Generated: 08/31/2023 16:02:55) Rev: 1

OIL ANALYSIS REPORT

Sample Rating Trend

WATER

Machine Id FES 2 (S/N 05411013) Component

Refrigeration Compressor Fluid USPI HF SYN 220 (--- QTS)

DIAGNOSIS

Recommendation

Resample at the next service interval to monitor.

Wear

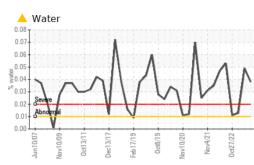
All component wear rates are normal.

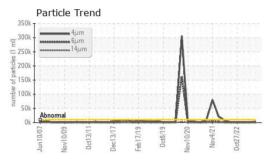
Contamination

There is a light concentration of water present in the oil. The amount and size of particulates present in the system are acceptable.

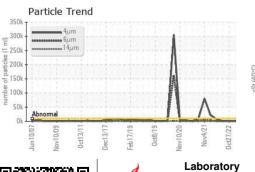
Fluid Condition

The AN level is acceptable for this fluid. The condition of the oil is suitable for further service.

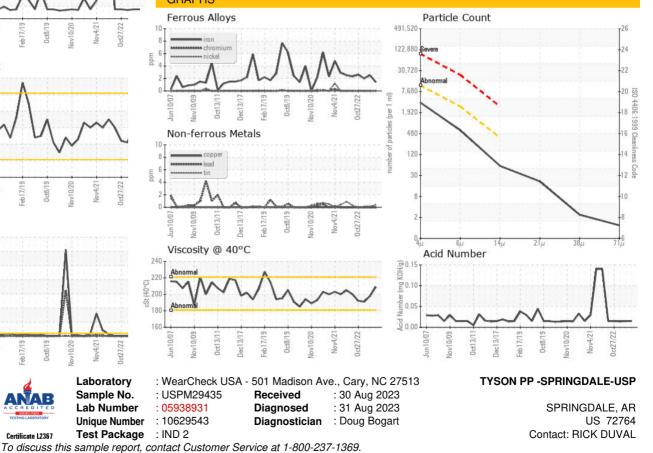

			the state of the s	
1				
n2007 Nov2009 Oct2011 Dec2017	Feb2019	0ct2019	Nov2020	Nov2021 Oct


SAMPLE INFORM	IATION	method	limit/base	current	history1	history2
Sample Number		Client Info		USPM29435	USPM28453	USP05780741
Sample Date		Client Info		29 Aug 2023	24 May 2023	28 Feb 2023
Machine Age	days	Client Info		0	0	0
Oil Age	days	Client Info		0	0	0
Oil Changed		Client Info		N/A	N/A	N/A
Sample Status				MARGINAL	MARGINAL	MARGINAL
WEAR METALS		method	limit/base	current	history1	history2
Iron	ppm	ASTM D5185m	>8	1	2	2
Chromium	ppm	ASTM D5185m	>2	0	0	0
Nickel	ppm	ASTM D5185m		0	0	0
Titanium	ppm	ASTM D5185m		0	0	0
Silver	ppm	ASTM D5185m	>2	0	0	0
Aluminum	ppm	ASTM D5185m	>3	<1	<1	0
Lead	ppm	ASTM D5185m	>2	0	0	0
Copper	ppm		>8	0	0	0
Tin	ppm	ASTM D5185m	>4	<1	<1	<1
Vanadium	ppm	ASTM D5185m		0	0	0
Cadmium	ppm	ASTM D5185m		0	0	0
ADDITIVES		method	limit/base	current	history1	history2
Boron	ppm	ASTM D5185m		0	0	0
Barium	ppm	ASTM D5185m		0	0	0
Molybdenum	ppm	ASTM D5185m		0	0	0
Manganese	ppm	ASTM D5185m		0	<1	0
Magnesium	ppm	ASTM D5185m		<1	0	0
Calcium	ppm	ASTM D5185m		0	0	0
Phosphorus	ppm	ASTM D5185m		0	0	0
Zinc	ppm	ASTM D5185m		0	0	0
Sulfur	ppm	ASTM D5185m		0	18	26
CONTAMINANTS	;	method	limit/base	current	history1	history2
Silicon	ppm	ASTM D5185m	>15	<1	1	2
Sodium	ppm	ASTM D5185m		0	0	<1
Potassium	ppm	ASTM D5185m	>20	0	0	0
Water	%	ASTM D6304		0.038	▲ 0.049	▲ 0.013
ppm Water	ppm	ASTM D6304		▲ 388.3	▲ 497.2	▲ 139.6
FLUID CLEANLIN	IESS	method	limit/base	current	history1	history2
Particles >4µm		ASTM D7647	>10000	3229	1546	877
Particles >6µm		ASTM D7647	>2500	526	227	247
Particles >14µm		ASTM D7647	>320	50	15	16
Particles >21µm		ASTM D7647	>80	18	6	3
Particles >38μm		ASTM D7647	>20	2	0	1
Particles >71μm		ASTM D7647	>4	1	0	0
Oil Cleanliness		ISO 4406 (c)	>20/18/15	19/16/13	18/15/11	17/15/11
FLUID DEGRADA	TION	method	limit/base	current	history1	history2
Acid Number (AN)	mg KOH/g	ASTM D974		0.015	0.015	0.014

Contact/Location: RICK DUVAL - TYSSPRPP



OIL ANALYSIS REPORT



VISUAL		method	limit/base	current	history1	history2
White Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Yellow Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Precipitate	scalar	*Visual	NONE	NONE	NONE	NONE
Silt	scalar	*Visual	NONE	NONE	NONE	NONE
Debris	scalar	*Visual	NONE	NONE	NONE	NONE
Sand/Dirt	scalar	*Visual	NONE	NONE	NONE	NONE
Appearance	scalar	*Visual	NORML	NORML	NORML	NORML
Odor	scalar	*Visual	NORML	NORML	NORML	NORML
Emulsified Water	scalar	*Visual	>0.01	NEG	NEG	NEG
Free Water	scalar	*Visual		NEG	NEG	NEG
FLUID PROPERT	IES	method	limit/base	current	history1	history2
Visc @ 40°C	cSt	ASTM D445		209	198	191
SAMPLE IMAGES	S	method	limit/base	current	history1	history2
Color				•		

Bottom

GRAPHS

^{* -} Denotes test methods that are outside of the ISO 17025 scope of accreditation.

Statements of conformity to specifications are based on the simple acceptance decision rule (JCGM 106:2012)

Certificate L2367

Contact/Location: RICK DUVAL - TYSSPRPP