

OIL ANALYSIS REPORT

Sample Rating Trend

NORMAL

VILTER 3 B (S/N 1066) Component

Refrigeration Compressor ALL TEMP 717 (--- GAL)

Recommendation

Resample at the next service interval to monitor.

Wear

All component wear rates are normal.

Contamination

There is no indication of any contamination in the oil. The amount and size of particulates present in the system are acceptable.

Fluid Condition

The AN level is acceptable for this fluid. The condition of the oil is suitable for further service.

																									- 11
																									- 11
																									1.1
																									- 11
																									- 11
																									- 11
																									- 11
																									- 11
																									- 11
																									- 11
																									- 11
																									- 11
																									1.1
																									- 11
																									- 11
																									- 11
																									111
																									- 11
																									- 11
																									- 11
												- 1													1.1
																									- 11
-			Ξ.	÷.,	 	 	 ۰.	 	 	 	 			 	÷.,		 1.1					11		 	
	1	1											T		1	1		1	1	Τ.	Т.	11	1	Г.	Г

a2010 Mar2012 May2013 Aug2014 Nov2015 Mar2017 Aug2018 Mar2020 Jul2021

SAMPLE INFORM	ATION	method	limit/base	current	history1	history2
Sample Number		Client Info		USP0001830	USP250545	USP239528
Sample Date		Client Info		23 Sep 2023	23 Feb 2023	29 Sep 2022
Machine Age	hrs	Client Info		47912	0	0
Oil Age	hrs	Client Info		0	0	0
Oil Changed		Client Info		N/A	N/A	N/A
Sample Status				NORMAL	NORMAL	NORMAL
WEAR METALS		method	limit/base	current	history1	history2
Iron	ppm	ASTM D5185m	>8	0	0	0
Chromium	ppm	ASTM D5185m	>2	0	0	0
Nickel	ppm	ASTM D5185m		0	0	0
Titanium	ppm	ASTM D5185m		0	0	0
Silver	ppm	ASTM D5185m	>2	0	0	0
Aluminum	ppm	ASTM D5185m	>3	<1	0	0
Lead	ppm	ASTM D5185m	>2	0	0	0
Copper	ppm	ASTM D5185m		<1	0	0
Tin	ppm	ASTM D5185m	>4	0	0	0
Vanadium	ppm	ASTM D5185m		0	0	0
Cadmium	ppm	ASTM D5185m		0	0	0
ADDITIVES		method	limit/base	current	history1	history2
Boron	ppm	ASTM D5185m		0	0	0
Barium	ppm	ASTM D5185m		0	0	0
Molybdenum	ppm	ASTM D5185m		0	0	0
Manganese	ppm	ASTM D5185m		<1	0	0
Magnesium	ppm	ASTM D5185m		0	0	0
Calcium	ppm	ASTM D5185m		0	0	0
Phosphorus	ppm	ASTM D5185m		0	0	0
Zinc	ppm	ASTM D5185m		0	0	0
Sulfur	ppm	ASTM D5185m		0	0	0
CONTAMINANTS		method	limit/base	current	history1	history2
Silicon	ppm	ASTM D5185m	>15	<1	0	0
Sodium	ppm	ASTM D5185m		<1	0	0
Potassium	ppm	ASTM D5185m	>20	0	0	0
Water	%	ASTM D6304	>0.01	0.001	0.003	0.003
ppm Water	ppm	ASTM D6304	>100	0.8	30.7	27.8
FLUID CLEANLIN	IESS	method	limit/base	current	history1	history2
Particles >4µm		ASTM D7647	>10000	5821	1055	3097
Particles >6µm		ASTM D7647	>2500	2324	316	569
Particles >14µm		ASTM D7647	>320	147	21	35
Particles >21µm		ASTM D7647	>80	23	6	7
Particles >38µm		ASTM D7647	>20	0	0	0
Particles >71µm		ASTM D7647		0	0	0
Oil Cleanliness		ISO 4406 (c)	>20/18/15	20/18/14	17/15/12	19/16/12
FLUID DEGRADA	TION	method	limit/base	current	history1	history2
Acid Number (AN)	mg KOH/g	ASTM D974		0.014	0.014	0.016

OIL ANALYSIS REPORT

scalar

scalar

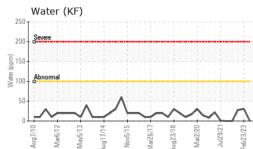
scalar

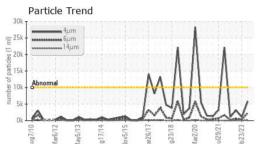
White Metal

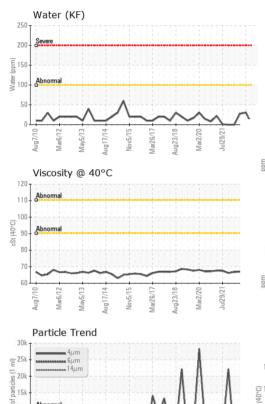
Yellow Metal

Precipitate

*Visual

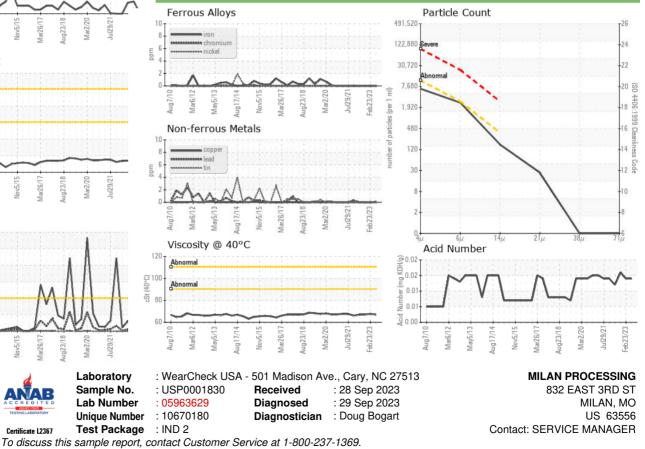

*Visual


*Visual


NONE

NONE

NONE



10

* - Denotes test methods that are outside of the ISO 17025 scope of accreditation.

Statements of conformity to specifications are based on the simple acceptance decision rule (JCGM 106:2012)

Contact/Location: SERVICE MANAGER ? - MILMILMO

NONE

NONE

NONE

NONE

NONE

NONE

NONE

NONE

NONE