

OIL ANALYSIS REPORT

Sample Rating Trend

ISO

PETERBILT 7708H

Component

Hydraulic System

CHEVRON DELO 400 MULTIGRADE 15W40

DIAGNOSIS

Recommendation

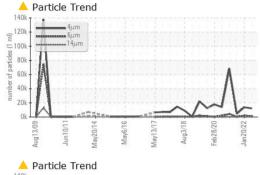
No corrective action is recommended at this time. The filter change at the time of sampling has been noted. Resample at the next service interval to monitor.

Wear

All component wear rates are normal.

Contamination

There is a moderate amount of silt (particulates < 14 microns in size) present in the oil.


Fluid Condition

The AN level is acceptable for this fluid. The condition of the oil is suitable for further service.

(60 GAL)						
SAMPLE INFORM	MATION	method	limit/base	current	history1	history2
Sample Number		Client Info		KL0012920	KL0007901	KL0006508
Sample Date		Client Info		06 Sep 2023	20 Jan 2022	19 Aug 2021
Machine Age	mls	Client Info		48511	45889	42492
Oil Age	mls	Client Info		0	0	42492
Oil Changed		Client Info		N/A	Not Changd	N/A
Sample Status				ATTENTION	ATTENTION	NORMAL
WEAR METALS		method	limit/base	current	history1	history2
Iron	ppm	ASTM D5185m	>20	20	22	20
Chromium	ppm	ASTM D5185m	>10	18	18	18
Nickel	ppm	ASTM D5185m	>10	0	0	0
Titanium	ppm	ASTM D5185m		<1	<1	<1
Silver	ppm	ASTM D5185m		0	<1	0
Aluminum	ppm	ASTM D5185m	>10	2	8	8
Lead	ppm	ASTM D5185m	>10	3	4	3
Copper	ppm	ASTM D5185m	>75	31	33	35
Tin	ppm	ASTM D5185m	>10	2	2	2
Antimony	ppm	ASTM D5185m			<1	0
Vanadium	ppm	ASTM D5185m		0	0	0
Cadmium	ppm	ASTM D5185m		0	<1	0
ADDITIVES		method	limit/base	current	history1	history2
Boron	ppm	ASTM D5185m	151	198	171	206
Barium	ppm	ASTM D5185m	0.4	0	0	0
Molybdenum	ppm	ASTM D5185m	250	60	55	60
Manganese	ppm	ASTM D5185m		<1	<1	<1
Magnesium	ppm	ASTM D5185m	0	683	538	587
Calcium	ppm	ASTM D5185m	2046	1324	1281	1444
Phosphorus	ppm	ASTM D5185m	1043	1007	929	1047
Zinc	ppm	ASTM D5185m	943	1191	1121	1239
Sulfur	ppm	ASTM D5185m	5012	3631	3240	3186
CONTAMINANTS		method	limit/base	current	history1	history2
Silicon	ppm	ASTM D5185m	>20	19	19	20
Sodium	ppm	ASTM D5185m		4	4	5
Potassium	ppm	ASTM D5185m	>20	2	3	2
FLUID CLEANLIN	IESS	method	limit/base	current	history1	history2
Particles >4µm		ASTM D7647		12172	13710	4478
Particles >6µm		ASTM D7647	>1300	<u> </u>	<u>▲</u> 1921	363
Particles >14μm		ASTM D7647	>160	22	85	13
Particles >21μm		ASTM D7647	>40	3	10	1
Particles >38μm		ASTM D7647	>10	0	1	0
Particles >71μm		ASTM D7647	>3	0	0	0
Oil Cleanliness		ISO 4406 (c)	>17/14	18/12	<u>▲</u> 18/14	16/11
FLUID DEGRADA	TION	method	limit/base	current	history1	history2
Acid Number (AN)	mg KOH/g	ASTM D8045		1.23	1.19	1.283

OIL ANALYSIS REPORT

VISUAL		method	limit/base	current	history1	history2
White Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Yellow Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Precipitate	scalar	*Visual	NONE	NONE	NONE	NONE
Silt	scalar	*Visual	NONE	NONE	NONE	NONE
Debris	scalar	*Visual	NONE	NONE	NONE	NONE
Sand/Dirt	scalar	*Visual	NONE	NONE	NONE	NONE
Appearance	scalar	*Visual	NORML	NORML	NORML	NORML
Odor	scalar	*Visual	NORML	NORML	NORML	NORML
Emulsified Water	scalar	*Visual	>0.1	NEG	NEG	NEG
Free Water	scalar	*Visual		NEG	NEG	NEG
FLUID PROPERTIES		method	limit/base	current	history1	history2

宣 120k - ■	4μm 6μm						
=100k - 11	14µm	J					
80k -							
9 40k + 6 1	-1-11-1-1				min	. 1	1
201						\ ~\	
20k 0k		Cine.	91	all prom	\sim		-

cSt Visc @ 40°C ASTM D445 119 81.2 79.4 80.7

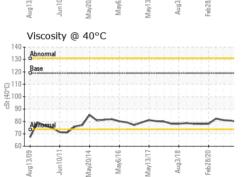
SAMPLE IMAGES

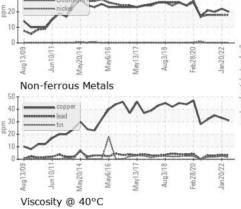
method limit/base current

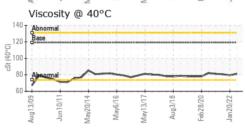
history1

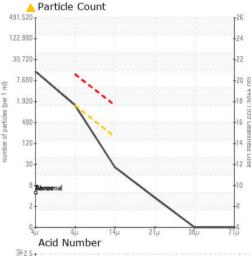
history2

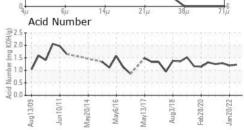

Color


Bottom









GRAPHS Ferrous Alloys

Certificate L2367

Laboratory Sample No. Lab Number **Unique Number**

: KL0012920 : 05965351 : 10671902 Test Package : MOB 2

: WearCheck USA - 501 Madison Ave., Cary, NC 27513 Received Diagnosed

: 29 Sep 2023 : 02 Oct 2023 Diagnostician : Don Baldridge

VILLAGE OF RUIDOSO 313 CREE MEADOWS DR RUIDOSO, NM US 88355 Contact: JERRY PARSONS

jerryparsons@ruidoso-nm.gov T: (575)257-1702

To discuss this sample report, contact Customer Service at 1-800-237-1369. * - Denotes test methods that are outside of the ISO 17025 scope of accreditation.

Statements of conformity to specifications are based on the simple acceptance decision rule (JCGM 106:2012)

Contact/Location: JERRY PARSONS - RUIRUI

F: x: