

OIL ANALYSIS REPORT

Sample Rating Trend

NORMAL

PETERBILT 01

Component

Diesel Engine

CHEVRON DELO 400 MULTIGRADE 15W40 (--- QTS)

DIAGNOSIS

Recommendation

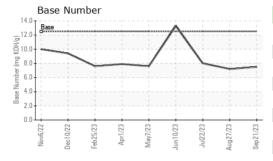
Resample at the next service interval to monitor.

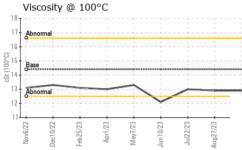
Wear

All component wear rates are normal.

Contamination

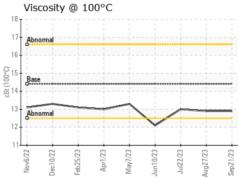
There is no indication of any contamination in the oil

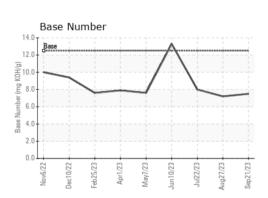

Fluid Condition


The BN result indicates that there is suitable alkalinity remaining in the oil. The condition of the oil is suitable for further service.

u (Q15)		Nov2022 De	2022 Feb2023 Apr2023	May2023 Jun2023 Jul2023 Aug20	23 Sep2023	
SAMPLE INFORM	MATION	method	limit/base	current	history1	history2
Sample Number		Client Info		WC0724731	WC0724730	WC0724729
Sample Date		Client Info		21 Sep 2023	27 Aug 2023	22 Jul 2023
Machine Age	mls	Client Info		1080826	1072171	1062013
Oil Age	mls	Client Info		10000	1072171	12000
Oil Changed		Client Info		Changed	Changed	Changed
Sample Status				NORMAL	NORMAL	NORMAL
CONTAMINATIO	N	method	limit/base	current	history1	history2
Fuel		WC Method	>5	<1.0	<1.0	<1.0
Glycol		WC Method		NEG	NEG	NEG
WEAR METALS		method	limit/base	current	history1	history2
Iron	ppm	ASTM D5185m	>110	6	6	7
Chromium	ppm	ASTM D5185m	>4	<1	<1	<1
Nickel	ppm	ASTM D5185m	>2	0	0	0
Titanium	ppm	ASTM D5185m		<1	<1	0
Silver	ppm	ASTM D5185m	>2	0	0	0
Aluminum	ppm	ASTM D5185m	>25	<1	4	2
Lead	ppm	ASTM D5185m	>45	1	0	<1
Copper	ppm	ASTM D5185m	>85	1	2	3
Tin	ppm	ASTM D5185m	>4	<1	<1	<1
Vanadium	ppm	ASTM D5185m		0	0	0
Cadmium	ppm	ASTM D5185m		0	0	0
ADDITIVES		method	limit/base	current	history1	history2
Boron	ppm	ASTM D5185m	151	473	415	362
Barium	ppm	ASTM D5185m	0.4	0	0	0
Molybdenum	ppm	ASTM D5185m	250	83	78	80
Manganese	ppm	ASTM D5185m		<1	<1	<1
Magnesium	ppm	ASTM D5185m	0	414	392	337
Calcium	ppm	ASTM D5185m	2046	1440	1363	1698
Phosphorus	ppm	ASTM D5185m	1043	1060	1012	1061
Zinc	ppm	ASTM D5185m	943	1335	1205	1247
Sulfur	ppm	ASTM D5185m	5012	3544	3724	3367
CONTAMINANTS	;	method	limit/base	current	history1	history2
Silicon	ppm	ASTM D5185m	>30	6	7	6
Sodium	ppm	ASTM D5185m		2	4	<1
Potassium	ppm	ASTM D5185m	>20	2	<1	4
INFRA-RED		method	limit/base	current	history1	history2
Soot %	%	*ASTM D7844	>3	0.2	0.2	0.2
Nitration	Abs/cm	*ASTM D7624	>20	5.8	5.6	6.3
Sulfation	Abs/.1mm	*ASTM D7415	>30	21.1	20.5	20.7
FLUID DEGRADA	ATION	method	limit/base	current	history1	history2
Oxidation	Abs/.1mm	*ASTM D7414	>25	15.4	14.6	14.7
Base Number (BN)	mg KOH/g		12.5	7.5	7.2	8.0
	99			-		


OIL ANALYSIS REPORT




VISUAL		method	limit/base	current	history1	history2
White Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Yellow Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Precipitate	scalar	*Visual	NONE	NONE	NONE	NONE
Silt	scalar	*Visual	NONE	NONE	NONE	NONE
Debris	scalar	*Visual	NONE	NONE	NONE	NONE
Sand/Dirt	scalar	*Visual	NONE	NONE	NONE	NONE
Appearance	scalar	*Visual	NORML	NORML	NORML	NORML
Odor	scalar	*Visual	NORML	NORML	NORML	NORML
Emulsified Water	scalar	*Visual	>0.2	NEG	NEG	NEG
Free Water	scalar	*Visual		NEG	NEG	NEG

FLUID PROPERT	IES	method			history1	history2
Visc @ 100°C	cSt	ASTM D445	14.4	12.9	12.9	13.0

	ferrou	s Metals					
10	coppe						
8 -	non tin						
mdd -	\						
					~		
2 Tanganan	The state of the s	Taxaa ka		/	AREE THE REAL		>
Nov6/22	Dec10/22	Apr1/23	May7/23	Jun10/23	Jul22/23	Aug27/23	Sep21/23
	ă :		2	1	7	Au	S

Certificate L2367

Laboratory Sample No. Lab Number

: WC0724731 : 05965898 Unique Number : 10672449 Test Package : FLEET

: WearCheck USA - 501 Madison Ave., Cary, NC 27513 Received Diagnosed

: 02 Oct 2023 : 03 Oct 2023 Diagnostician : Don Baldridge

MGK 175 VAUGHT DR TROUT, LA US 71371

Contact: SERVICE MANAGER gggreen77758@yahoo.com

To discuss this sample report, contact Customer Service at 1-800-237-1369.

* - Denotes test methods that are outside of the ISO 17025 scope of accreditation. Statements of conformity to specifications are based on the simple acceptance decision rule (JCGM 106:2012) T:

F: