

OIL ANALYSIS REPORT

NORMAL

DIAGNOSIS

Recommendation

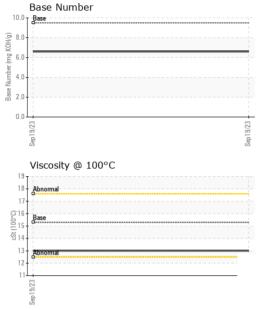
Resample at the next service interval to monitor.

Moor

All component wear rates are normal.

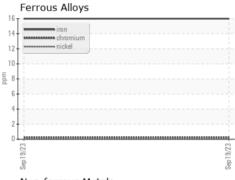
Contamination

There is no indication of any contamination in the oil

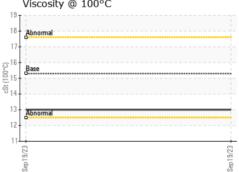

Fluid Condition

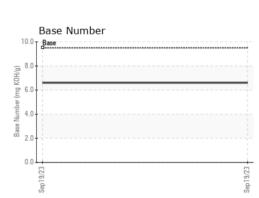
The BN result indicates that there is suitable alkalinity remaining in the oil. The condition of the oil is suitable for further service.

A 134440 (MA	· - /			Sep 2023		
SAMPLE INFORM	MATION	method	limit/base	current	history1	history2
Sample Number		Client Info		WC0843980		
Sample Date		Client Info		19 Sep 2023		
Machine Age	hrs	Client Info		32019		
Oil Age	hrs	Client Info		500		
Oil Changed		Client Info		Changed		
Sample Status				NORMAL		
CONTAMINATIO	N	method	limit/base	current	history1	history2
Fuel		WC Method	>4.0	<1.0		
Glycol		WC Method		NEG		
WEAR METALS		method	limit/base	current	history1	history2
ron	ppm	ASTM D5185m	>120	16		
Chromium	ppm	ASTM D5185m	>10	<1		
Nickel	ppm	ASTM D5185m	>5	0		
Titanium	ppm	ASTM D5185m		30		
Silver	ppm	ASTM D5185m	>5	0		
Aluminum	ppm	ASTM D5185m	>20	<1		
Lead	ppm	ASTM D5185m	>40	2		
Copper	ppm	ASTM D5185m	>300	5		
Tin	ppm	ASTM D5185m	>10	<1		
Vanadium	ppm	ASTM D5185m		0		
Cadmium	ppm	ASTM D5185m		0		
ADDITIVES		method	limit/base	current	history1	history2
Boron	ppm	ASTM D5185m	50	46		
Barium	ppm	ASTM D5185m		0		
Molybdenum	ppm	ASTM D5185m		58		
Manganese	ppm	ASTM D5185m		<1		
Magnesium	ppm	ASTM D5185m	270	205		
Calcium	ppm	ASTM D5185m	1900	2084		
Phosphorus	ppm	ASTM D5185m	1000	1034		
Zinc	ppm	ASTM D5185m	1260	1310		
Sulfur	ppm	ASTM D5185m	3400	3993		
CONTAMINANTS	\$	method	limit/base	current	history1	history2
Silicon	ppm	ASTM D5185m	>25	4		
Sodium	ppm	ASTM D5185m		2		
Potassium	ppm	ASTM D5185m	>20	2		
INFRA-RED		method	limit/base	current	history1	history2
Soot %	%	*ASTM D7844		0.4		
Nitration	Abs/cm	*ASTM D7624	>20	9.4		
Sulfation	Abs/.1mm	*ASTM D7415	>30	20.3		
FLUID DEGRADA	ATION	method	limit/base	current	history1	history2
Oxidation	Abs/.1mm	*ASTM D7414	>25	15.1		
Base Number (BN)	mg KOH/g	ASTM D2896	9.5	6.6		



OIL ANALYSIS REPORT




VISUAL		method	limit/base	current	history1	history2
					motory i	motory
White Metal	scalar	*Visual	NONE	NONE		
Yellow Metal	scalar	*Visual	NONE	NONE		
Precipitate	scalar	*Visual	NONE	NONE		
Silt	scalar	*Visual	NONE	NONE		
Debris	scalar	*Visual	NONE	NONE		
Sand/Dirt	scalar	*Visual	NONE	NONE		
Appearance	scalar	*Visual	NORML	NORML		
Odor	scalar	*Visual	NORML	NORML		
Emulsified Water	scalar	*Visual	>0.1	NEG		
Free Water	scalar	*Visual		NEG		
FLUID PROPERT	TIES	method				history2

I LOID I HOI LI	IIILO	memou			Thistory i	HISTOLYZ
Visc @ 100°C	cSt	ASTM D445	15.3	13.0		

¹⁰ T	copper]	
8-	nanananana lead	
6-		
4-		
2-		
0		Seo 19.723
Con	de la companya de la	9

Certificate L2367

Laboratory Sample No. Lab Number Unique Number : 10672477

Test Package : FLEET

: WearCheck USA - 501 Madison Ave., Cary, NC 27513 : WC0843980 : 05965926

Received Diagnosed

: 02 Oct 2023 : 02 Oct 2023 Diagnostician : Wes Davis

SUPERIOR MARINE 201 KELLY LANE CHESAPEAKE, OH

US 45619 Contact: DARRELL KEARNS

darrellkearns@superiormarineinc.com

To discuss this sample report, contact Customer Service at 1-800-237-1369. * - Denotes test methods that are outside of the ISO 17025 scope of accreditation.

Statements of conformity to specifications are based on the simple acceptance decision rule (JCGM 106:2012)

T:

F: