

OIL ANALYSIS REPORT

Sample Rating Trend

NORMAL

Area WP29 **MVR108-5 Effect**

Component **Hydraulic System** MOBIL DTE 25 (93 GAL)

Recommendation

Resample at the next service interval to monitor.

Wear

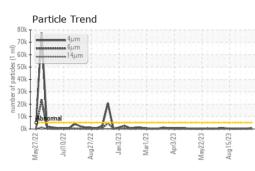
All component wear rates are normal.

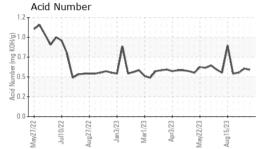
Contamination

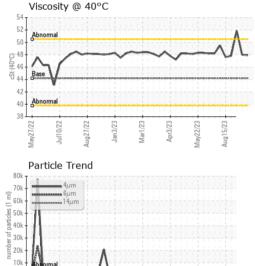
The amount and size of particulates present in the system are acceptable. There is no indication of any contamination in the oil.

Fluid Condition

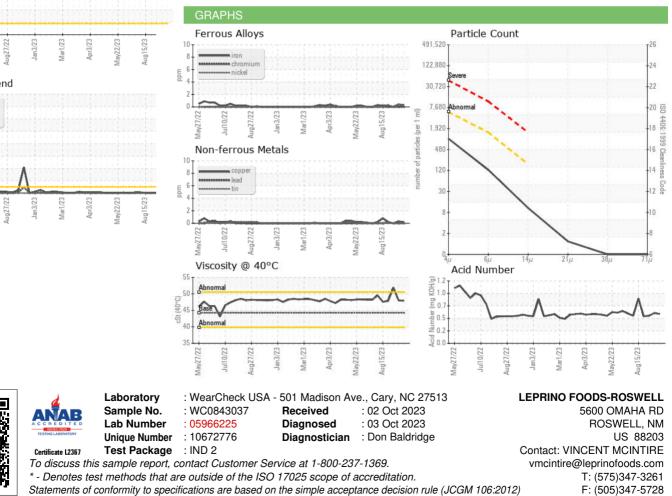
The AN level is acceptable for this fluid. The condition of the oil is suitable for further service.


1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
1997 CONTRACTOR CONT	
• • • • • • • • • • • • • • • • • • •	
2022 L-2022 A-2022 L-2022 M-2022 A-2022 M-2022 A-	




SAMPLE INFORM	IATION	method	limit/base	current	history1	history2
Sample Number		Client Info		WC0843037	WC0843033	WC0843045
Sample Date		Client Info		25 Sep 2023	18 Sep 2023	29 Aug 2023
Machine Age	hrs	Client Info		0	0	0
Oil Age	hrs	Client Info		0	0	0
Oil Changed		Client Info		N/A	N/A	N/A
Sample Status				NORMAL	NORMAL	NORMAL
WEAR METALS		method	limit/base	current	history1	history2
Iron	ppm	ASTM D5185m	>20	<1	<1	0
Chromium	ppm	ASTM D5185m	>20	0	0	0
Nickel	ppm	ASTM D5185m	>20	<1	<1	0
Titanium	ppm	ASTM D5185m		0	0	0
Silver	ppm	ASTM D5185m		0	0	0
Aluminum	ppm	ASTM D5185m	>20	0	0	<1
Lead	ppm	ASTM D5185m	>20	0	0	0
Copper	ppm	ASTM D5185m	>20	<1	<1	0
Tin	ppm	ASTM D5185m	>20	0	0	0
Vanadium	ppm	ASTM D5185m		0	0	0
Cadmium	ppm	ASTM D5185m		0	0	0
ADDITIVES		method	limit/base	current	history1	history2
Boron	ppm	ASTM D5185m		0	0	0
Barium	ppm	ASTM D5185m		0	0	0
Molybdenum	ppm	ASTM D5185m		0	0	0
Manganese	ppm	ASTM D5185m		0	0	0
Magnesium	ppm	ASTM D5185m		<1	0	0
Calcium	ppm	ASTM D5185m		44	43	44
Phosphorus	ppm	ASTM D5185m		327	344	333
Zinc	ppm	ASTM D5185m		531	550	489
Sulfur	ppm	ASTM D5185m		1015	1143	1043
CONTAMINANTS		method	limit/base	current	history1	history2
Silicon	ppm	ASTM D5185m	>15	<1	0	0
Sodium	ppm	ASTM D5185m		0	0	<1
Potassium	ppm	ASTM D5185m	>20	<1	1	0
FLUID CLEANLIN	IESS	method	limit/base	current	history1	history2
Particles >4µm		ASTM D7647	>5000	860	321	228
Particles >6µm		ASTM D7647	>1300	111	78	67
Particles >14µm		ASTM D7647	>160	9	9	8
Particles >21µm		ASTM D7647	>40	1	2	2
Particles >38µm		ASTM D7647	>10	0	0	0
Particles >71µm		ASTM D7647	>3	0	0	0
Oil Cleanliness		ISO 4406 (c)	>19/17/14	17/14/10	16/13/10	15/13/10
FLUID DEGRADA	TION	method	limit/base	current	history1	history2
Acid Number (AN)	mg KOH/g	ASTM D8045		0.566	0.58	0.53

OIL ANALYSIS REPORT


0k

回話

May27/22

VISUAL		method	limit/base	current	history1	history2
White Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Yellow Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Precipitate	scalar	*Visual	NONE	NONE	NONE	NONE
Silt	scalar	*Visual	NONE	NONE	NONE	NONE
Debris	scalar	*Visual	NONE	NONE	NONE	NONE
Sand/Dirt	scalar	*Visual	NONE	NONE	NONE	NONE
Appearance	scalar	*Visual	NORML	NORML	NORML	NORML
Odor	scalar	*Visual	NORML	NORML	NORML	NORML
Emulsified Water	scalar	*Visual	>0.05	NEG	NEG	NEG
Free Water	scalar	*Visual		NEG	NEG	NEG
FLUID PROPERT	IES	method	limit/base	current	history1	history2
Visc @ 40°C	cSt	ASTM D445	44.2	47.9	48.0	51.9
SAMPLE IMAGES	3	method	limit/base	current	history1	history2
Color				·		
Detterre						

Bottom

Submitted By: VINCENT MCINTIRE

Page 2 of 2