

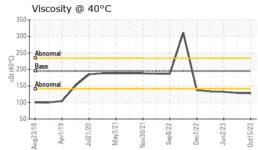
OIL ANALYSIS REPORT

Area KANSAS/44/EG - EXCAVATOR 20.517L [KANSAS^44^EG - EXCAVATOR]

Component Left Final Drive Fluid

MOBIL MOBILTRANS HD 50 (--- GAL)

DIAGNOSIS	SAMPLE INFORM	IATION	method				history2
Recommendation	Sample Number		Client Info		WC0862536	WC0741864	WC0781243
Resample at the next service interval to monitor.	Sample Date		Client Info		15 Oct 2023	28 Sep 2023	02 Jun 2023
Wear	Machine Age	hrs	Client Info		5826	5769	5512
All component wear rates are normal.	Oil Age	hrs	Client Info		5826	1142	4627
Contamination	Oil Changed		Client Info		Changed	Not Changd	N/A
There is no indication of any contamination in the oil.	Sample Status				NORMAL	NORMAL	NORMAL
Fluid Condition	WEAR METALS		method	limit/base	current	history1	history2
The condition of the oil is acceptable for the time in	Iron	ppm	ASTM D5185m	>800	247	266	273
service.	Chromium	ppm	ASTM D5185m	>10	2	2	2
	Nickel	ppm	ASTM D5185m	>5	<1	0	<1
	Titanium	ppm	ASTM D5185m	>15	<1	<1	1
	Silver	ppm	ASTM D5185m	>2	0	0	0
	Aluminum	ppm	ASTM D5185m	>75	13	21	16
	Lead	ppm	ASTM D5185m		<1	0	<1
	Copper	ppm	ASTM D5185m	>75	<1	0	<1
	Tin	ppm	ASTM D5185m		<1	0	<1
	Vanadium	ppm	ASTM D5185m		<1	0	<1
	Cadmium	ppm	ASTM D5185m		0	0	<1
	ADDITIVES		method	limit/base	current	history1	history2
	Boron	ppm	ASTM D5185m		209	262	264
	Barium	ppm	ASTM D5185m		0	0	0
	Molybdenum	ppm	ASTM D5185m		0	0	<1
	Manganese	ppm	ASTM D5185m		3	3	3
	Magnesium	ppm	ASTM D5185m		24	9	9
	Calcium	ppm	ASTM D5185m		184	207	152
	Phosphorus	ppm	ASTM D5185m		1378	1476	1342
	Zinc	ppm	ASTM D5185m		83	80	57
	Sulfur	ppm	ASTM D5185m		23759	26386	25056
	CONTAMINANTS		method	limit/base	current	history1	history2
	Silicon	ppm	ASTM D5185m	>400	57	64	66
	Sodium	ppm	ASTM D5185m		3	1	2
	Potassium	ppm	ASTM D5185m	>20	7	6	7
	VISUAL		method	limit/base	current	history1	history2
	White Metal	scalar	*Visual	NONE	NONE	NONE	NONE
	Yellow Metal	scalar	*Visual	NONE	NONE	NONE	NONE
	Precipitate	scalar	*Visual	NONE	NONE	NONE	NONE
	Silt	scalar	*Visual	NONE	NONE	NONE	NONE
	Debris	scalar	*Visual	NONE	NONE	NONE	NONE
	Sand/Dirt	scalar	*Visual	NONE	NONE	NONE	NONE
	Appearance	scalar	*Visual	NORML	NORML	NORML	NORML
	Odor	scalar	*Visual	NORML	NORML	NORML	NORML
	Emulsified Water	scalar	*Visual	>0.2	NEG	NEG	NEG
	Free Water	scalar	*Visual	-	NEG	NEG	NEG
	FLUID PROPERT	IES	method	limit/base	current	history1	history2
	Visc @ 40°C	cSt	ASTM D445	195	128	129	132
	-	001	70 HW D440	100	120		


Report Id: SHEWIC [WUSCAR] 05994758 (Generated: 11/01/2023 20:04:31) Rev: 1

Submitted By: JAMES MOORE

OIL ANALYSIS REPORT

SAMPLE IMAGES method

		SAMPLE IMAGES	method			history1	history2
/	<u> </u>	Color			no image	no image	no image
May7/21	Dec//22	Bottom			no image	no image	no image
~		GRAPHS					
		Ferrous Alloys					
		1600					
		1400 - excession chromium	٨				
		1200 -					
		1000	11				
	ud d	800	-/				
		600 -	/ \				
		400					
		200					
		Z1 = 119 = 119 = 10	22 22	23			
		Aug23/18 Apr1/19 Jul21/20 May7/21 Nov30/21	Sep8/22 Dec7/22 Jun2/23	0ct15/23			
		Non-ferrous Metals					
		10 9 copper					
		8 - management lead					
		7-					
		6					
		4					
		3-					
		2	\wedge				
				4			
		Aug23/18 Apr1/19 Jul21/20 May7/21 Nov30/21	Sep8/22 Dec7/22 Jun2/23	0ct15/23 -			
		viscosity @ 40°C	N D T	00			
		320					
		300 - 280	Λ				
		260 -					
		240 - Abnormal					
	5t (40°C	220 - 200 - Base					
	8	180					
		140 Abnormal					
		120					
		21 21 21 21 21 20 80 80 80 80 80 80 80 80 80 80 80 80 80	22	5			
		Aug23/18 Apr1/19 Jul21/20 May7/21	Sep8/22 Dec7/22 Jun2/23	0ct15/23			
	Laboratory Sample No.	: WearCheck USA - 501 M : WC0862536 Rece		y, NC 27513 Oct 2023	SHERV	JOOD CONSTRU 3219 V	ICTION CO INC WEST MAY ST
ACCREDITED	Lab Number	: 05994758 Diag	nosed : 01 N	lov 2023		02.0	WICHITA, KS
Certificate L2367	Unique Number Test Package	: 10723118 Diagi : CONST	nostician : Don	Baldridge		Contac	US 67213 t: DOUG KING
To discuss the	is sample report, o	contact Customer Service at				doug.king(@sherwood.net
		re outside of the ISO 17025 ifications are based on the sin			ICGM 106-2010		(316)617-3161 F: x:
	CONTONINA IO SUECI		יוטוס מטטפטומווטל ע	บบเอเบเ เ เ นเฮ (000111 100.2012	1	I. X.

Statements of conformity to specifications are based on the simple acceptance decision rule (JCGM 106:2012)

Submitted By: JAMES MOORE

Page 2 of 2

F: x: