
PROBLEM SUMMARY

AC 1 (S/N 01197-002-1-01-02)

Air Compressor

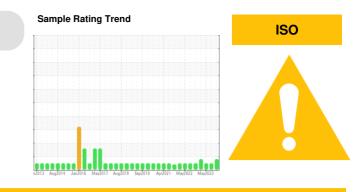
KAESER SIGMA (OEM) M-460 (--- GAL)

COMPONENT CONDITION SUMMARY

RECOMMENDATION

Resample at the next service interval to monitor.

PROBLEMATIC TEST RESULTS							
Sample Status			ATTENTION	NORMAL	NORMAL		
Particles >4µm	ASTM D7647	>10000	<u> </u>	151	1891		
Oil Cleanliness	ISO 4406 (c)	>20/18/15	A 21/17/11	14/12/9	18/16/12		


Customer Id: JACALL Sample No.: USP243319 Lab Number: 05998029 Test Package: IND 2

To manage this report scan the QR code

To discuss the diagnosis or test data: Doug Bogart +1 (800)237-1369 x4016 <u>dougb@wearcheckusa.com</u>

To change component or sample information: Customer Service +1 1-800-237-1369 <u>customerservice@wearcheck.com</u>

RECOMMENDED ACTIONS

There are no recommended actions for this sample.

HISTORICAL DIAGNOSIS

01 Aug 2023 Diag: Doug Bogart

Resample at the next service interval to monitor.All component wear rates are normal. There is no indication of any contamination in the oil. The amount and size of particulates present in the system are acceptable. The AN level is acceptable for this fluid. The condition of the oil is suitable for further service.

08 May 2023 Diag: Doug Bogart

Resample at the next service interval to monitor.All component wear rates are normal. There is no indication of any contamination in the oil. The amount and size of particulates present in the system are acceptable. The AN level is acceptable for this fluid. The condition of the oil is suitable for further service.

view report

06 Feb 2023 Diag: Doug Bogart

Resample at the next service interval to monitor.All component wear rates are normal. There is a moderate amount of silt (particulates < 6 microns in size) present in the oil. The AN level is acceptable for this fluid. The condition of the oil is suitable for further service.

OIL ANALYSIS REPORT

ISO

AC 1 (S/N 01197-002-1-01-02)

Air Compressor

Fluid KAESER SIGMA (OEM) M-460 (--- GAL)

DIAGNOSIS

A Recommendation

Resample at the next service interval to monitor.

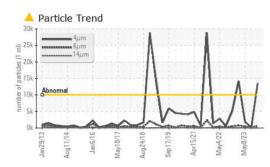
Wear

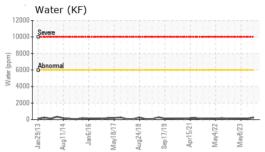
All component wear rates are normal.

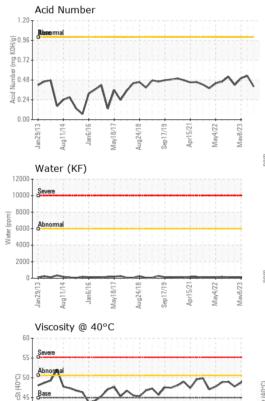
Contamination

There is a moderate amount of silt (particulates < 6 microns in size) present in the oil.

Fluid Condition


The AN level is acceptable for this fluid. The condition of the oil is suitable for further service.

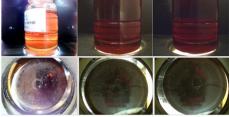

			119900
			and the second se
013 Aug2014	Jan2016 May2017 Aug2018	Sep2019 Apr2021 May2022	May2023


SAMPLE INFORM	ATION	method	limit/base	current	history1	history2
Sample Number		Client Info		USP243319	USP243322	USP243321
Sample Date		Client Info		27 Oct 2023	01 Aug 2023	08 May 2023
Machine Age	hrs	Client Info		49368	48286	46347
Oil Age	hrs	Client Info		0	0	0
Oil Changed		Client Info		N/A	N/A	N/A
Sample Status				ATTENTION	NORMAL	NORMAL
WEAR METALS		method	limit/base	current	history1	history2
Iron	ppm	ASTM D5185m	>50	0	0	0
Chromium	ppm	ASTM D5185m	>4	0	0	<1
Nickel	ppm	ASTM D5185m	>4	ء <1	<1	0
Titanium	ppm	ASTM D5185m	~ 1	0	0	<1
Silver	ppm	ASTM D5185m		0	<1	0
Aluminum	ppm	ASTM D5185m	>10	1	1	2
Lead		ASTM D5185m	>20	- <1	0	0
Copper	ppm	ASTM D5185m		2	8	4
Tin	ppm ppm	ASTM D5185m	>40 >5	2 <1	0 <1	<1
Vanadium		ASTM D5185m	>5	0	0	0
Cadmium	ppm ppm	ASTM D5185m		0	0	0
ADDITIVES	1-1-	method	limit/base	current	history1	history2
Boron		ASTM D5185m	0	0	0	0
	ppm		90	3		0
Barium	ppm	ASTM D5185m			0	
Molybdenum	ppm	ASTM D5185m	0	0	0	0
Manganese	ppm	ASTM D5185m	100	<1	0	<1
Magnesium	ppm	ASTM D5185m	100	41	0	19
Calcium	ppm		0	3	0	0
Phosphorus	ppm	ASTM D5185m	0	1	0	3
Zinc	ppm		0	35	<1	24
Sulfur	ppm	ASTM D5185m	23500	19163	22184	25056
CONTAMINANTS		method	limit/base	current	history1	history2
Silicon	ppm	ASTM D5185m	>25	11	10	11
Sodium	ppm	ASTM D5185m		13	0	3
Potassium	ppm	ASTM D5185m	>20	5	0	4
Water	%	ASTM D6304	>0.6	0.025	0.012	0.011
ppm Water	ppm	ASTM D6304	>6000	250.6	128.7	115.6
FLUID CLEANLIN	IESS	method	limit/base	current	history1	history2
Particles >4µm		ASTM D7647	>10000	A 13554	151	1891
Particles >6µm		ASTM D7647	>2500	663	33	448
Particles >14µm		ASTM D7647	>320	11	2	27
Particles >21µm		ASTM D7647	>80	3	1	5
Particles >38µm		ASTM D7647	>20	0	0	0
Particles >71µm		ASTM D7647	>4	0	0	0
Oil Cleanliness		ISO 4406 (c)	>20/18/15	A 21/17/11	14/12/9	18/16/12
FLUID DEGRADA	TION	method	limit/base	current	history1	history2
Acid Number (AN)	mg KOH/g	ASTM D8045	1.0	0.40	0.53	0.50

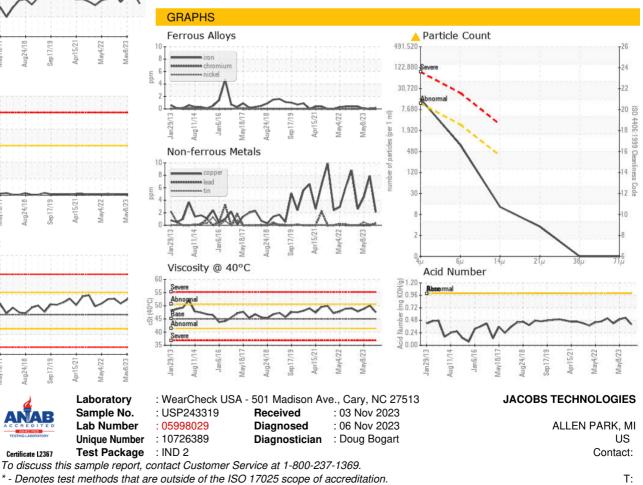
OIL ANALYSIS REPORT

Bas

S


40

35


Abnorma

1-118/1

VISUAL		method	limit/base	current	history1	history2
White Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Yellow Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Precipitate	scalar	*Visual	NONE	NONE	NONE	NONE
Silt	scalar	*Visual	NONE	NONE	NONE	NONE
Debris	scalar	*Visual	NONE	NONE	NONE	LIGHT
Sand/Dirt	scalar	*Visual	NONE	NONE	NONE	NONE
Appearance	scalar	*Visual	NORML	NORML	NORML	NORML
Odor	scalar	*Visual	NORML	NORML	NORML	NORML
Emulsified Water	scalar	*Visual	>0.6	NEG	NEG	NEG
Free Water	scalar	*Visual		NEG	NEG	NEG
FLUID PROPER	TIES	method	limit/base	current	history1	history2
Visc @ 40°C	cSt	ASTM D445	45	47.5	50.1	48.8
SAMPLE IMAGE	S	method	limit/base	current	history1	history2
Color				A 2010		

Bottom

Statements of conformity to specifications are based on the simple acceptance decision rule (JCGM 106:2012)

Contact/Location: ? ? - JACALL

Page 4 of 4

F: