

OIL ANALYSIS REPORT

Sample Rating Trend

NORMAL

KAESER MR-AIRC-10 (S/N 1403)

Component

Compressor

ULTRACHEM OMNILUBE 32/46 (--- GAL)

- 171	Λ/		ura.	тел	101
DI	Αι	GII	V.	\circ	0

Recommendation

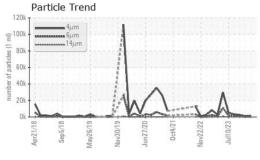
Resample at the next service interval to monitor.

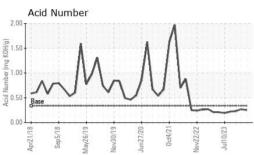
Wear

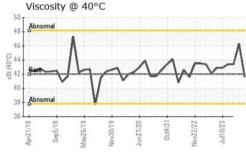
All component wear rates are normal.

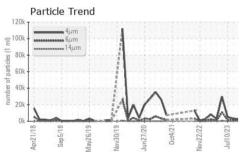
Contamination

There is no indication of any contamination in the oil. The amount and size of particulates present in the system are acceptable.


Fluid Condition


The AN level is acceptable for this fluid. The condition of the oil is suitable for further service.


		r2018 Sep20	18 May2019 Nov2019	Jun2020 Oct2021 Nov2022	Jul2023	
SAMPLE INFORM	MATION	method	limit/base	current	history1	history2
Sample Number		Client Info		WC0826096	WC0808569	WC0842401
Sample Date		Client Info		30 Oct 2023	03 Oct 2023	05 Sep 2023
Machine Age	hrs	Client Info		7929	7378	6806
Oil Age	hrs	Client Info		0	0	0
Oil Changed		Client Info		Changed	Not Changd	Not Changd
Sample Status				NORMAL	NORMAL	NORMAL
WEAR METALS		method	limit/base	current	history1	history2
Iron	ppm	ASTM D5185m	>50	0	0	<1
Chromium	ppm	ASTM D5185m	>10	0	0	0
Nickel	ppm	ASTM D5185m	>3	0	0	<1
Titanium	ppm	ASTM D5185m	>3	0	0	0
Silver	ppm	ASTM D5185m	>2	0	0	0
Aluminum	ppm	ASTM D5185m	>10	<1	<1	0
Lead	ppm	ASTM D5185m	>10	0	0	0
Copper	ppm	ASTM D5185m	>50	0	<1	<1
Tin	ppm	ASTM D5185m	>10	0	0	<1
Vanadium	ppm	ASTM D5185m		0	0	0
Cadmium	ppm	ASTM D5185m		0	0	0
ADDITIVES		method	limit/base	current	history1	history2
Boron	ppm	ASTM D5185m	1	0	0	0
Barium	ppm	ASTM D5185m	0.3	0	0	0
Molybdenum	ppm	ASTM D5185m	0	0	0	0
Manganese	ppm	ASTM D5185m	0	0	0	<1
Magnesium	ppm	ASTM D5185m	0	0	3	2
Calcium	ppm	ASTM D5185m	0.5	0	0	0
Phosphorus	ppm	ASTM D5185m	536	283	28	33
Zinc	ppm	ASTM D5185m	0.2	4	0	0
Sulfur	ppm	ASTM D5185m	649	1139	1151	1548
CONTAMINANTS	\$	method	limit/base	current	history1	history2
Silicon	ppm	ASTM D5185m	>25	0	<1	<1
Sodium	ppm	ASTM D5185m		<1	<1	<1
Potassium	ppm	ASTM D5185m	>20	0	<1	<1
FLUID CLEANLIN	IESS	method	limit/base	current	history1	history2
Particles >4µm		ASTM D7647		1469	1095	2622
Particles >6µm		ASTM D7647	>1300	477	265	745
Particles >14µm		ASTM D7647	>80	37	20	35
Particles >21µm		ASTM D7647	>20	10	5	7
Particles >38µm		ASTM D7647	>4	0	0	0
Particles >71µm		ASTM D7647	>3	0	0	0
Oil Cleanliness		ISO 4406 (c)	>/17/13	18/16/12	17/15/11	19/17/12
FLUID DEGRADA	NOITA	method	limit/base	current	history1	history2
Acid Number (AN)	mg KOH/g	ASTM D8045	0.337	0.25	0.27	0.23



OIL ANALYSIS REPORT

VISUAL		method	limit/base	current	history1	history2
White Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Yellow Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Precipitate	scalar	*Visual	NONE	NONE	NONE	NONE
Silt	scalar	*Visual	NONE	NONE	NONE	NONE
Debris	scalar	*Visual	NONE	NONE	NONE	LIGHT
Sand/Dirt	scalar	*Visual	NONE	NONE	NONE	NONE
Appearance	scalar	*Visual	NORML	NORML	NORML	NORML
Odor	scalar	*Visual	NORML	NORML	NORML	NORML
Emulsified Water	scalar	*Visual	>0.05	NEG	NEG	NEG
Free Water	scalar	*Visual		NEG	NEG	NEG
FLUID DDODEDT	150		12 22 //		111	1

FLUID PROPER	THES	method	ilmit/base		nistory i	nistory
Visc @ 40°C	cSt	ASTM D445	42.0	41.6	46.3	43.4

SAMI	PLE IN	MAGE	S
O, 11111		<i>,,,,</i> ,,,,	_

Color

Bottom

Ferrous	Alloys						Particle Count	
	000000						491,520	Ī
							122,880	+
*********	nickel						30,720	
1111111	777711		-	4	1	_	7,680	1
Sep5/18	May26/19	Nov30/19	Jun27/20	0ct4/21	Nov22/22	Jul10/23	1 1,920 to auticles (per 1 120 - 120	
lon-fer					(100)		\$5 OF THE RESERVE TO SERVE THE RESERVE TO SERVE THE RESERVE THE RE	
	copper						120	
t					A		30-	+
2	\nearrow	A	Λ	A			8 Sebresemal	
Sep5/18	May26/19	Nov30/19	Jun27/20 -	0ct4/21	Nov22/22	Jul10/23	2	
			Juni	ŏ	Novi	3	04μ 6μ 14μ 21μ	38µ 71µ
iscosity/	y @ 40	°C					Acid Number	30µ 11)
Abnormal	A						\(\frac{\text{\tinit}\\ \text{\tin}\tint{\tinit}\\ \tint{\text{\text{\text{\text{\text{\text{\text{\text{\texi}\tint{\text{\texi}\tint{\text{\texi}\tint{\text{\texi}\tin}\tint{\text{\texi}\tint{\text{\ti}\tint{\text{\tinit}\tex{	
Base	1	_	1	1		لسا	(S) 2.00 (S) 1.50 (S) 1.	
The same of		-	-	-	~	-	9 100	h

Certificate L2367

Laboratory

Sample No. Lab Number **Unique Number**

: WC0826096 : 05999806 : 10728166

cSt (40°C)

: WearCheck USA - 501 Madison Ave., Cary, NC 27513 Received Diagnosed

: 08 Nov 2023

Diagnostician : Don Baldridge

: 06 Nov 2023

Test Package : IND 2 (Additional Tests: PrtCount)

To discuss this sample report, contact Customer Service at 1-800-237-1369. * - Denotes test methods that are outside of the ISO 17025 scope of accreditation. Statements of conformity to specifications are based on the simple acceptance decision rule (JCGM 106:2012) **BURKE CORPORATION.**

1516 SOUTH D AVE NEVADA, IA US 50201

Contact: EDWARDO COBIO JECOBIO@BURKECORP.COM

T:

Contact/Location: EDWARDO COBIO - BURNEV

F: (515)382-3955