

OIL ANALYSIS REPORT

Sample Rating Trend

INJ 206 (S/N 7571673) Component

Hydraulic System MOBIL DTE 25 (225 QTS)

DIAGNOSIS

Recommendation

We recommend you service the filters on this component. Resample at the next service interval to monitor.

Wear

All component wear rates are normal.

Contamination

There is a high amount of particulates present in the oil.

Fluid Condition

The AN level is acceptable for this fluid. The condition of the oil is suitable for further service.

SAMPLE INFORM	IATION	method	limit/base	current	history1	history2
Sample Number		Client Info		DC0028915	DC04871269	DCM2027051
Sample Date		Client Info		22 Nov 2023	16 Dec 2019	16 Jan 2019
Machine Age	hrs	Client Info		200	0	0
Oil Age	hrs	Client Info		0	0	0
Oil Changed		Client Info		N/A	N/A	N/A
Sample Status				ABNORMAL	ATTENTION	ABNORMAL
CONTAMINATION	J	method	limit/base	current	history1	history2
Water		WC Method	>0.1	NEG	NEG	NEG
WEAR METALS		method	limit/base	current	history1	history2
Iron	ppm	ASTM D5185m	>20	4	5	5
Chromium	ppm	ASTM D5185m	>10	<1	<1	<1
Nickel	ppm	ASTM D5185m	>10	0	0	0
Titanium	ppm	ASTM D5185m		<1	0	0
Silver	ppm	ASTM D5185m		0	0	0
Aluminum	ppm	ASTM D5185m	>10	2	0	0
Lead	ppm	ASTM D5185m	>10	0	<1	<1
Copper	ppm	ASTM D5185m	>75	1	1	1
Tin	ppm	ASTM D5185m	>10	0	<1	<1
Antimony	ppm	ASTM D5185m			0	0
Vanadium	ppm	ASTM D5185m		0	0	0
Cadmium	ppm	ASTM D5185m		0	0	0
ADDITIVES		method	limit/base	current	history1	history2
Boron	ppm	ASTM D5185m		0	<1	<1
Barium	ppm	ASTM D5185m		0	<1	0
Molybdenum	ppm	ASTM D5185m		0	<1	0
Manganese	ppm	ASTM D5185m		0	<1	<1
Magnesium	ppm	ASTM D5185m		4	3	<1
Calcium	ppm	ASTM D5185m		30	125	133
Phosphorus	ppm	ASTM D5185m		333	358	352
Zinc	ppm	ASTM D5185m		305	536	510
Sulfur	ppm	ASTM D5185m		2815	3738	3766
CONTAMINANTS		method	limit/base	current	history1	history2
Silicon	ppm	ASTM D5185m	>20	1	3	4
Sodium	ppm	ASTM D5185m		0	11	11
Potassium	ppm	ASTM D5185m	>20	2	1	<1
FLUID CLEANLIN	ESS	method	limit/base	current	history1	history2
Particles >4µm		ASTM D7647	>160	A 1301	108	▲ 334
Particles >6µm		ASTM D7647	>40	<u> </u>	4 1	▲ 96
Particles >14µm		ASTM D7647	>10	<mark> 8</mark> 7	6	8
Particles >21µm		ASTM D7647	>3	A 11	3	2
		10111101011	20	<u> </u>	0	<u>_</u>
Particles >38µm		ASTM D7647	>3	▲ 41 ▲ 4	0	0

ISO 4406 (c) >14/12/10 **A 18/16/14**

Oil Cleanliness

▲ 16/14/10

14/13/10

OIL ANALYSIS REPORT

A Particle	Trend				
	łμm Sµm 4µm				
o 1k				/	/
Abnormal	and the local division of the local divisio				
Jul20/17	Nov15/17	Jun7/18	Jan 16/19	Dec16/19	Nov22/23
🔺 Particle	Trend				
^{3k} ∋ _{2k}	łμm Sum				

40

38

Jul20/1

Vov15/17

FLUID DEGRADATION		method	limit/base	current	history1	history2
Acid Number (AN)	mg KOH/g	ASTM D8045		0.65	0.766	0.632
VISUAL		method	limit/base	current	history1	history2
White Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Yellow Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Precipitate	scalar	*Visual	NONE	NONE	NONE	NONE
Silt	scalar	*Visual	NONE	NONE	NONE	NONE
Debris	scalar	*Visual	NONE	NONE	NONE	NONE
Sand/Dirt	scalar	*Visual	NONE	NONE	NONE	NONE
Appearance	scalar	*Visual	NORML	NORML	NORML	NORML
Odor	scalar	*Visual	NORML	NORML	NORML	NORML
Emulsified Water	scalar	*Visual	>0.1	NEG	NEG	NEG
Free Water	scalar	*Visual		NEG	NEG	NEG
FLUID PROPERTIES		method	limit/base	current	history1	history2
Visc @ 40°C	cSt	ASTM D445	44.2	41.9	40.6	40.43
SAMPLE IMAGES		method	limit/base	current	history1	history2

Color

Bottom

Certificate L2367

Jan 16/19

Jec16/19

Submitted By: RICHARD STEPHENS

Page 2 of 2