
PROBLEM SUMMARY

BARTO Machine Id 6326 [BARTO]
Component
Diesel Engine
Fluid

PETRO CANADA DURON SHP 15W40 (--- GAL)

Sample Rating Trend SOOT

COMPONENT CONDITION SUMMARY

RECOMMENDATION

The oil change at the time of sampling has been noted.

PROBLEMATIC TEST RESULTS						
Sample Status				ABNORMAL	ABNORMAL	NORMAL
Soot %	%	*ASTM D7844	>3	△ 3.6	△ 3.9	1.5

Customer Id: SCHBARTO Sample No.: SBP0005924 Lab Number: 06017206 Test Package: FLEET

To manage this report scan the QR code

To discuss the diagnosis or test data: Wes Davis +1 905-569-8600 x223 wesd@wearcheck.ca

To change component or sample information: Customer Service +1 1-800-237-1369 customerservice@wearcheck.com

RECOMMENDED ACTIONS

There are no recommended actions for this sample.

HISTORICAL DIAGNOSIS

27 Apr 2023 Diag: Jonathan Hester

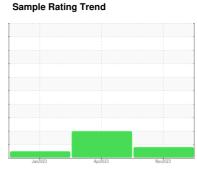
DEGRADATION

We recommend you service the filters on this component. Resample at the next service interval to monitor. NOTE: High solids (carbon/soot) in the sample have limited the accuracy of Infra-Red data including Total Base Number (TBN) value. All component wear rates are normal. There is an abnormal amount of solids and carbon present in the oil. The BN level is low.

25 Jan 2023 Diag: Wes Davis

NORMAL

Resample at the next service interval to monitor. NOTE: Please provide information regarding reservoir capacity, filter type and micron rating with next sample. Metal levels are typical for a components first oil change. There is no indication of any contamination in the oil. The BN result indicates that there is suitable alkalinity remaining in the oil. The condition of the oil is suitable for further service.



OIL ANALYSIS REPORT

BARTO 6326 [BARTO]

Component Diesel Engine

PETRO CANADA DURON SHP 15W40 (--- GAL)

DIAGNOSIS

Recommendation

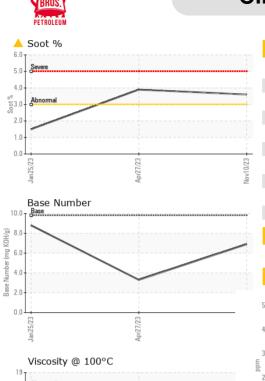
The oil change at the time of sampling has been noted.

Wear

All component wear rates are normal.

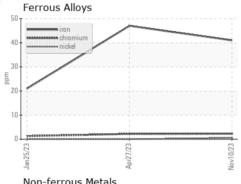
Contamination

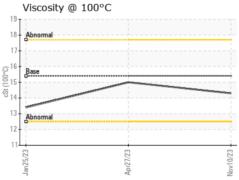
Light concentration of carbon/soot present in the oil.

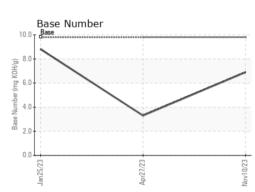

Fluid Condition

The BN result indicates that there is suitable alkalinity remaining in the oil. The oil is no longer serviceable due to the presence of contaminants.

Jan 2023 Apr 2023 Nov 2023						
SAMPLE INFORM	IATION	method	limit/base	current	history1	history2
Sample Number		Client Info		SBP0005924	SBP0002562	SBP0002189
Sample Date		Client Info		10 Nov 2023	27 Apr 2023	25 Jan 2023
Machine Age	mls	Client Info		573659	550204	520832
Oil Age	mls	Client Info		24098	29372	520832
Oil Changed		Client Info		Changed	Not Changd	Changed
Sample Status				ABNORMAL	ABNORMAL	NORMAL
CONTAMINATION	ı	method	limit/base	current	history1	history2
Fuel		WC Method	>5	<1.0	<1.0	<1.0
Water		WC Method	>0.2	NEG	NEG	NEG
Glycol		WC Method		NEG	NEG	NEG
WEAR METALS		method	limit/base	current	history1	history2
Iron	ppm	ASTM D5185m	>80	41	47	21
Chromium	ppm	ASTM D5185m	>5	2	2	1
Nickel	ppm	ASTM D5185m	>2	<1	0	0
Titanium	ppm	ASTM D5185m		<1	0	0
Silver	ppm	ASTM D5185m	>3	0	0	0
Aluminum	ppm	ASTM D5185m	>30	3	2	<1
Lead	ppm	ASTM D5185m	>30	4	4	<1
Copper	ppm	ASTM D5185m	>150	3	2	<1
Tin	ppm	ASTM D5185m	>5	<1	<1	<1
Vanadium	ppm	ASTM D5185m		0	0	0
Cadmium	ppm	ASTM D5185m		<1	0	0
ADDITIVES		method	limit/base	current	history1	history2
Boron	ppm	ASTM D5185m	0	1	10	12
Barium	ppm	ASTM D5185m	0	0	0	0
Molybdenum	ppm	ASTM D5185m	60	58	56	58
Manganese	ppm	ASTM D5185m	0	<1	<1	<1
Magnesium	ppm	ASTM D5185m	1010	916	879	858
Calcium	ppm	ASTM D5185m	1070	1054	1382	1162
Phosphorus	ppm	ASTM D5185m	1150	878	968	924
Zinc	ppm	ASTM D5185m	1270	1167	1205	1115
Sulfur	ppm	ASTM D5185m	2060	3050	3516	3435
CONTAMINANTS		method	limit/base	current	history1	history2
Silicon	ppm	ASTM D5185m	>20	3	3	4
Sodium	ppm	ASTM D5185m		<1	4	6
Potassium	ppm	ASTM D5185m	>20	5	1	0
INFRA-RED		method	limit/base	current	history1	history2
Soot %	%	*ASTM D7844	>3	▲ 3.6	▲ 3.9	1.5
Nitration	Abs/cm	*ASTM D7624	>20	9.7	10.2	7.2
Sulfation	Abs/.1mm	*ASTM D7415	>30	24.9	26.9	20.6
FLUID DEGRADA	TION	method	limit/base	current	history1	history2
Oxidation	Abs/.1mm	*ASTM D7414	>25	15.7	16.6	14.6
Base Number (BN)	mg KOH/g	ASTM D2896	9.8	6.9	▲ 3.3	8.8
	901119		3.0	0.0		0.0


OIL ANALYSIS REPORT


VISUAL		method	limit/base	current	history1	history2
White Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Yellow Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Precipitate	scalar	*Visual	NONE	NONE	NONE	NONE
Silt	scalar	*Visual	NONE	NONE	NONE	NONE
Debris	scalar	*Visual	NONE	NONE	NONE	NONE
Sand/Dirt	scalar	*Visual	NONE	NONE	NONE	NONE
Appearance	scalar	*Visual	NORML	NORML	NORML	NORML
Odor	scalar	*Visual	NORML	NORML	NORML	NORML
Emulsified Water	scalar	*Visual	>0.2	NEG	NEG	NEG
Free Water	scalar	*Visual		NEG	NEG	NEG
	FILID DOODEDLES					


FLUID PROPER	HES	method	limit/base	current	history1	history2
Visc @ 100°C	cSt	ASTM D445	15.4	14.3	15.0	13.4

GRAPHS

	10-	Non-ferrous Metals
	8.	copper
_ 6-	6.	
mdd	4.	and the state of t
	2.	A STATE OF THE STA
		Jan 25/23 - Apr 27/23 - Apr 27/23 - Nov 10/23 -
		Viscosity @ 100°C

Certificate L2367

Laboratory Sample No. Lab Number Unique Number : 10756350 Test Package : FLEET

: WearCheck USA - 501 Madison Ave., Cary, NC 27513 : SBP0005924 : 06017206

Received Diagnosed Diagnostician : Wes Davis

: 24 Nov 2023 : 28 Nov 2023

SCHMIDT TRANSPORTATION - BARTO

108 E Bay Road Plattsmouth, NE US 68048

Contact: Service Manager

To discuss this sample report, contact Customer Service at 1-800-237-1369.

* - Denotes test methods that are outside of the ISO 17025 scope of accreditation.

Statements of conformity to specifications are based on the simple acceptance decision rule (JCGM 106:2012)

T:

F: