

OIL ANALYSIS REPORT

Sample Rating Trend

NORMAL

C-11 (S/N S0114QFMFTHAA03)

Refrigeration Compressor

USPI ALT-68 SC (--- GAL)

DIAGNOSIS

Recommendation

Resample at the next service interval to monitor.

Wear

All component wear rates are normal.

Contamination

There is no indication of any contamination in the oil. The amount and size of particulates present in the system are acceptable.

Fluid Condition

The AN level is acceptable for this fluid. The condition of the oil is suitable for further service.

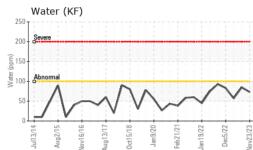
																									111
																									- 1
																									1111
																									1.1
					-																				
					-	12																			
	÷.	÷.,	÷ .				_ 1				Ŀ .	Ŀ .				Ŀ .				Ŀ .			Ŀ .		
	Г														1			Т			T	Т			
2014	7	201			016	-	ugž	0.1	-		018	-	Ĵan;	0.01		Feb2	10.2	-		2022	-		202		Vov20
.019	AU	02U I	5 1	VOVZ	016	- P	iug2	011		JCI	010		Jau'	CUZ		F601	202		Jan 2	20Z2		Dec!	202.	2 1	VOVZU.

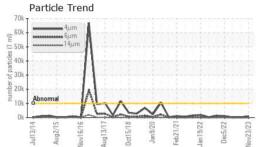
SAMPLE INFORM	MATION	method	limit/base	current	history1	history2
Sample Number		Client Info		USP0003515	USP0000647	USP249257
Sample Date		Client Info		23 Nov 2023	16 Aug 2023	16 May 2023
Machine Age	hrs	Client Info		0	0	0
Oil Age	hrs	Client Info		0	0	0
Oil Changed		Client Info		N/A	N/A	N/A
Sample Status				NORMAL	NORMAL	NORMAL
WEAR METALS		method	limit/base	current	history1	history2
Iron	ppm	ASTM D5185m	>8	2	0	0
Chromium	ppm	ASTM D5185m	>2	<1	0	0
Nickel	ppm	ASTM D5185m		<1	0	0
Titanium	ppm	ASTM D5185m		<1	<1	0
Silver	ppm	ASTM D5185m	>2	0	0	0
Aluminum	ppm	ASTM D5185m	>3	1	<1	1
Lead	ppm	ASTM D5185m	>2	0	<1	0
Copper	ppm	ASTM D5185m	>8	<1	0	0
Tin	ppm	ASTM D5185m	>4	0	0	0
Vanadium	ppm	ASTM D5185m		0	<1	0
Cadmium	ppm	ASTM D5185m		<1	0	0
ADDITIVES		method	limit/base	current	history1	history2
Boron	ppm	ASTM D5185m		0	0	0
Barium	ppm	ASTM D5185m		0	0	0
Molybdenum	ppm	ASTM D5185m		<1	0	0
Manganese	ppm	ASTM D5185m		0	<1	0
Magnesium	ppm	ASTM D5185m		0	0	0
Calcium	ppm	ASTM D5185m		<1	0	0
Phosphorus	ppm	ASTM D5185m		0	1	0
Zinc	ppm	ASTM D5185m		0	0	0
Sulfur	ppm	ASTM D5185m	50	0	0	0
CONTAMINANTS	\$	method	limit/base	current	history1	history2
Silicon	ppm	ASTM D5185m	>15	<1	<1	0
Sodium	ppm	ASTM D5185m		0	<1	0
Potassium	ppm	ASTM D5185m	>20	<1	1	0
Water	%	ASTM D6304	>0.01	0.007	0.008	0.005
ppm Water	ppm	ASTM D6304	>100	73	84.9	57.2
FLUID CLEANLIN	IESS	method	limit/base	current	history1	history2
Particles >4µm		ASTM D7647	>10000	841	320	93
Particles >6µm		ASTM D7647	>2500	147	98	42
Particles >14µm		ASTM D7647	>320	12	10	8
Particles >21µm		ASTM D7647	>80	3	3	2
Particles >38µm		ASTM D7647	>20	0	0	0
Particles >71µm		ASTM D7647	>4	0	0	0
Oil Cleanliness		ISO 4406 (c)	>20/18/15	17/14/11	15/14/10	14/13/10
FLUID DEGRADA	TION	method	limit/base	current	history1	history2
Acid Number (AN)	mg KOH/g	ASTM D974	0.005	0.014	0.014	0.013

OIL ANALYSIS REPORT

scalar

scalar


scalar


White Metal

Yellow Metal

GRAPHS

Precipitate

*Visual

*Visual

*Visual

NONE

NORML

NORML

NEG

NEG

66.1

1406

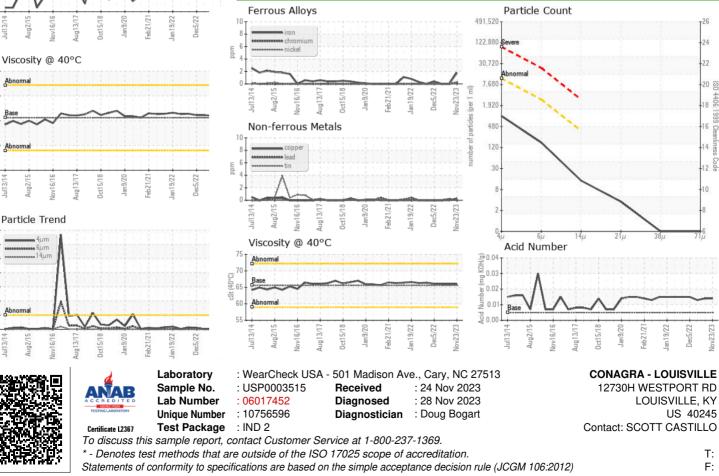
6661

Water (KF) 250 200 Ē 150 Water 100 n lan 19/22 eh21/71 ua13/1 1/1 B/1 vua2/1 Viscosity @ 40°C 7 cSt (40°C)

60

55

(Im 1) 50k 40k 30k


20

Ē.

Abr

Abı

lul13/1

Contact/Location: SCOTT CASTILLO - CAGLOU