

OIL ANALYSIS REPORT

Sample Rating Trend

Area MAChine Id M-311 Component Gearbox Fluid MOBIL SHC 630 (4 GAL)

DIAGNOSIS

Recommendation

Resample at the next service interval to monitor.

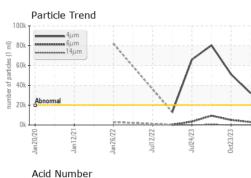
Wear

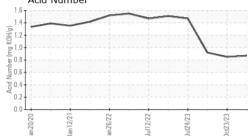
All component wear rates are normal.

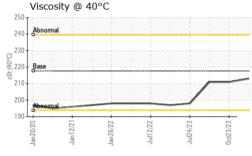
Contamination

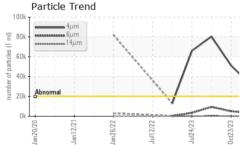
There is a moderate amount of silt (particulates < 6 microns in size) present in the oil.

Fluid Condition

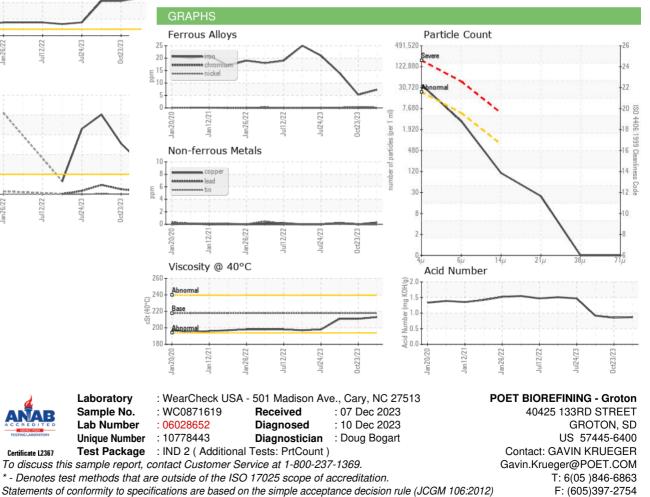

The AN level is acceptable for this fluid. The condition of the oil is suitable for further service.


		Jan2020	Jan2021 Jan2022	Jul2022 Jul2023 (0ct2023		
SAMPLE INFORM	IATION	method	limit/base	current	history1	history2	
Sample Number		Client Info		WC0871619	WC0871615	WC0854669	
Sample Date		Client Info		05 Dec 2023	23 Oct 2023	06 Sep 2023	
Machine Age	mths	Client Info		0	0	0	
Oil Age	mths	Client Info		0	2	1	
Oil Changed		Client Info		N/A	Not Changd	Not Changd	
Sample Status				NORMAL	NORMAL	NORMAL	
CONTAMINATION	۷	method	limit/base	current	history1	history2	
Water		WC Method	>0.2	NEG	NEG	NEG	
WEAR METALS		method	limit/base	current	history1	history2	
Iron	ppm	ASTM D5185m	>200	7	5	14	
Chromium	ppm	ASTM D5185m	>15	0	0	0	
Nickel	ppm	ASTM D5185m	>15	<1	<1	<1	
Titanium	ppm	ASTM D5185m		0	0	0	
Silver	ppm	ASTM D5185m		0	0	0	
Aluminum	ppm	ASTM D5185m	>25	<1	0	1	
Lead	ppm	ASTM D5185m	>100	0	0	<1	
Copper	ppm	ASTM D5185m	>200	<1	0	<1	
Tin	ppm	ASTM D5185m	>25	0	0	<1	
Vanadium	ppm	ASTM D5185m		0	0	0	
Cadmium	ppm	ASTM D5185m		0	0	0	
ADDITIVES		method	limit/base	current	history1	history2	
Boron	ppm	ASTM D5185m		0	0	0	
Barium	ppm	ASTM D5185m		0	0	0	
Molybdenum	ppm	ASTM D5185m		0	0	0	
Manganese	ppm	ASTM D5185m		<1	<1	<1	
Magnesium	ppm	ASTM D5185m		<1	4	<1	
Calcium	ppm	ASTM D5185m		6	1	2	
Phosphorus	ppm	ASTM D5185m		437	463	474	
Zinc	ppm	ASTM D5185m		4	9	20	
Sulfur	ppm	ASTM D5185m		703	914	1254	
CONTAMINANTS		method	limit/base	current	history1	history2	
Silicon	ppm	ASTM D5185m	>50	21	18	20	
Sodium	ppm	ASTM D5185m		1	0	0	
Potassium	ppm	ASTM D5185m	>20	1	0	0	
FLUID CLEANLIN	ESS	method	limit/base	current	history1	history2	
Particles >4µm		ASTM D7647	>20000	31981	51127	80418	
Particles >6µm		ASTM D7647	>5000	2927	5004	9365	
Particles >14µm		ASTM D7647	>640	96	69	437	
Particles >21µm		ASTM D7647	>160	21	11	89	
Particles >38µm		ASTM D7647	>40	0	0	1	
Particles >71µm		ASTM D7647	>10	0	0	0	
Oil Cleanliness		ISO 4406 (c)	>21/19/16	22/19/14	23/20/13	24/20/16	
FLUID DEGRADA	TION	method	limit/base	current	history1	history2	
Acid Number (AN)	mg KOH/g	ASTM D8045		0.87	0.85	0.92	
· /				Submitted By: GAVIN KRUEGER			


Submitted By: GAVIN KRUEGER



OIL ANALYSIS REPORT



VISUAL		method	limit/base	current	history1	history2
White Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Yellow Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Precipitate	scalar	*Visual	NONE	NONE	NONE	NONE
Silt	scalar	*Visual	NONE	NONE	NONE	NONE
Debris	scalar	*Visual	NONE	NONE	NONE	NONE
Sand/Dirt	scalar	*Visual	NONE	NONE	NONE	NONE
Appearance	scalar	*Visual	NORML	NORML	NORML	NORML
Odor	scalar	*Visual	NORML	NORML	NORML	NORML
Emulsified Water	scalar	*Visual	>0.2	NEG	NEG	NEG
Free Water	scalar	*Visual		NEG	NEG	NEG
FLUID PROPERTIES		method	limit/base	current	history1	history2
Visc @ 40°C	cSt	ASTM D445	217.7	213	211	211
SAMPLE IMAGES metho		method	limit/base	current	history1	history2
Color				•		
Bottom						

Bottom

Submitted By: GAVIN KRUEGER

Page 2 of 2