
OIL ANALYSIS REPORT

GUAY SON/Yavaros [CONHER] CATERPILLAR Pacifico Ind Admiralty Aux

Auxiliary Engine

CHEVRON DELO 400 MULTIGRADE 15W40 (25 LTR)

DIAGNOSIS

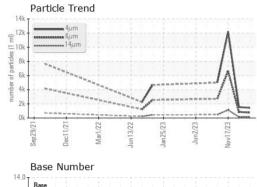
Recommendation

Resample at the next service interval to monitor.

All component wear rates are normal.

Contamination

The amount and size of particulates present in the system are acceptable. There is no indication of any contamination in the oil.


Fluid Condition

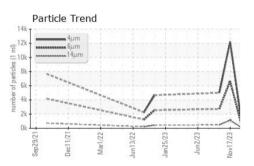
The BN result indicates that there is suitable alkalinity remaining in the oil. The condition of the oil is suitable for further service.

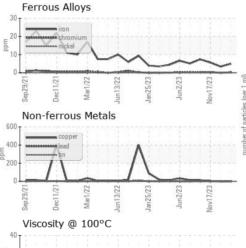
-IIGRADE 15W40 (25 LIK)						
SAMPLE INFORM	MATION	method	limit/base	current	history1	history2
Sample Number		Client Info		KL0013459	KL0013442	KL0013391
Sample Date		Client Info		04 Jan 2024	21 Dec 2023	17 Nov 2023
Machine Age	hrs	Client Info		0	5893	0
Oil Age	hrs	Client Info		315	193	95
Oil Changed		Client Info		Not Changd	Not Changd	Not Changd
Sample Status				NORMAL	NORMAL	ATTENTION
CONTAMINATIO	N	method	limit/base	current	history1	history2
Fuel		WC Method	>4.0	<1.0	<1.0	<1.0
Water		WC Method	>0.1	NEG	NEG	NEG
Glycol		WC Method		NEG	NEG	NEG
WEAR METALS		method	limit/base	current	history1	history2
Iron	ppm	ASTM D5185m	>100	5	3	6
Chromium	ppm	ASTM D5185m	>20	<1	0	<1
Nickel	ppm	ASTM D5185m	>2	0	0	<1
Titanium	ppm	ASTM D5185m	>2	0	0	<1
Silver	ppm	ASTM D5185m	>2	0	0	0
Aluminum	ppm	ASTM D5185m	>20	2	2	2
Lead	ppm	ASTM D5185m	>40	0	0	<1
Copper	ppm	ASTM D5185m	>330	1	1	3
Tin	ppm	ASTM D5185m	>15	0	0	<1
Vanadium	ppm	ASTM D5185m		0	0	0
Cadmium	ppm	ASTM D5185m		0	0	<1
ADDITIVES		method	limit/base	current	history1	history2
Boron	ppm	ASTM D5185m		326	296	367
Barium	ppm	ASTM D5185m		1	0	1
Molybdenum	ppm	ASTM D5185m		131	124	125
Manganese	ppm	ASTM D5185m		0	0	<1
Magnesium	ppm	ASTM D5185m		641	641	617
Calcium	ppm	ASTM D5185m		1465	1468	1481
Phosphorus	ppm	ASTM D5185m	1360	734	705	652
Zinc	ppm	ASTM D5185m	1480	805	807	775
Sulfur	ppm	ASTM D5185m		2637	2380	2502
CONTAMINANTS	3	method	limit/base	current	history1	history2
Silicon	ppm	ASTM D5185m	>25	5	5	11
Sodium	ppm	ASTM D5185m		0	1	4
Potassium	ppm	ASTM D5185m	>20	2	0	2
INFRA-RED		method	limit/base	current	history1	history2
Soot %	%	*ASTM D7844		0.2	0.1	0.1
Nitration	Abs/cm	*ASTM D7624	>20	6.4	6.1	5.4
Sulfation	Abs/.1mm	*ASTM D7415	>30	22.6	22.8	22.5

OIL ANALYSIS REPORT

FLUID CLEANLINESS	method				history2
Particles >4µm	ASTM D7647		1409	1557	12206
Particles >6µm	ASTM D7647	>5000	768	848	6649
Particles >14µm	ASTM D7647	>640	131	144	▲ 1132
Particles >21µm	ASTM D7647	>160	44	49	▲ 381
Particles >38µm	ASTM D7647	>40	7	8	▲ 59
Particles >71µm	ASTM D7647	>10	1	1	6
Oil Cleanliness	ISO 4406 (c)	>19/16	17/14	17/14	▲ 20/17

Base Numb	er				
14.0 Base				111	
(B/H/40)				\wedge	
(12.0 L Base (12.0 L) (10.0 L)	~				
5 0.0 ed					
Man New					
Base 4.0					
0.0	22 -	23	23	23	
Sep29/2	Mar1/ Jun13/	Jan 25/	Jun2/	Nov17/	
Ø Ö	- 7	-0	->	ž	

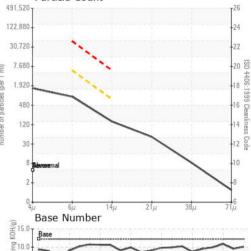

FLUID DEGRADAT	ION	method			history1	history'2
Oxidation A	Abs/.1mm	*ASTM D7414	>25	16.4	16.2	15.7
Base Number (BN)	ng KOH/g	ASTM D2896	12.2	10.09	9.53	10.83


			,			_	
Visc	ositv @	100°C					
35 T							
20							
30 - A							
() 25 () 25 성 20							
E	1						
Abnor	mal	1 1 1				1000	
15 - Base	<u></u>						
10	IIIai						_
12/	/21	22	22	73	62	73	
ep 29	l l l	Marl	m13,	an 25,	Jun2	ov17,	
Sep29/21	Dec11/2	Mar1/2	Jun13/2	Jan25/23	Jun2/2	Nov17/2	

VISUAL		method	limit/base	current	history1	history2
White Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Yellow Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Precipitate	scalar	*Visual	NONE	NONE	NONE	NONE
Silt	scalar	*Visual	NONE	NONE	NONE	NONE
Debris	scalar	*Visual	NONE	NONE	NONE	NONE
Sand/Dirt	scalar	*Visual	NONE	NONE	NONE	NONE
Appearance	scalar	*Visual	NORML	NORML	NORML	NORML
Odor	scalar	*Visual	NORML	NORML	NORML	NORML
Emulsified Water	scalar	*Visual	>0.1	NEG	NEG	NEG
Free Water	scalar	*Visual		NEG	NEG	NEG
FLUID PROPERT	IFS	method	limit/base	current	history1	history2

12.6

5.0 0.0 gse Particle Count



cSt

ASTM D445

15.1

12.7

13.0

Laboratory Sample No. Lab Number Unique Number

: WearCheck USA - 501 Madison Ave., Cary, NC 27513 : 06075003 : 10857094

: KL0013459

Visc @ 100°C

GRAPHS

Recieved Diagnosed

: 30 Jan 2024 : 02 Feb 2024 Diagnostician : Jonathan Hester

Test Package : MOB 2 (Additional Tests: PrtCount) To discuss this sample report, contact Customer Service at 1-800-237-1369.

* - Denotes test methods that are outside of the ISO 17025 scope of accreditation. Statements of conformity to specifications are based on the simple acceptance decision rule (JCGM 106:2012)

CONOR JUAREZ 348 HERMOSILLO, MX 83140

Contact: EDUARDO GARCIA egarcia.comsa@gmail.com T: (526)622-1581 x:81

F: x: