

OIL ANALYSIS REPORT

Sample Rating Trend

NORMAL

FRICK C-4 1100 (S/N 2284DD)

Refrigeration Compressor

USPI 1009-68 SC (15 GAL)

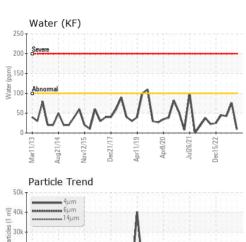
Recommendation

Resample at the next service interval to monitor.

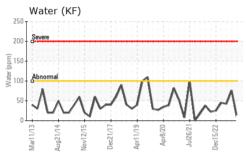
All component wear rates are normal.

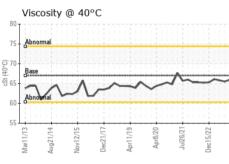
Contamination

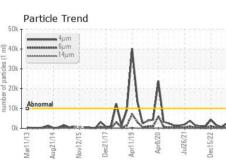
There is no indication of any contamination in the component. The amount and size of particulates present in the system is acceptable.

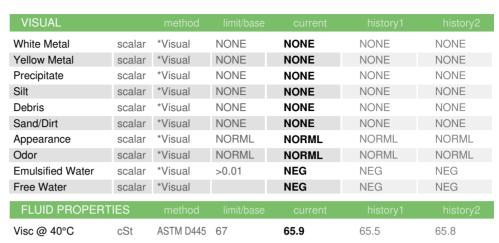

Fluid Condition

The AN level is acceptable for this fluid. The condition of the oil is suitable for further service.

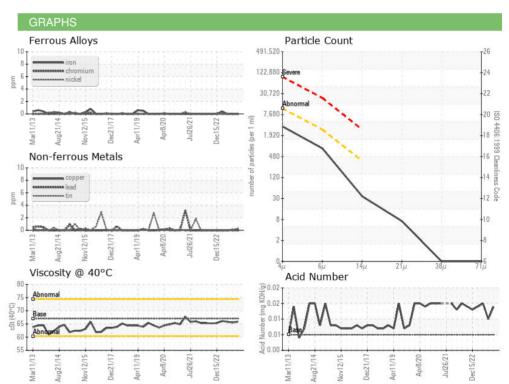

v2013 Aug/2014 Nov/2015 Dec2017 Agv/2019 Agv/2020 Jul/2021 Dec2022						
SAMPLE INFORM	MATION	method	limit/base	current	history1	history2
Sample Number		Client Info		USP0007745	USP0003484	USP249594
Sample Date		Client Info		21 Feb 2024	02 Nov 2023	06 Jul 2023
Machine Age	hrs	Client Info		73438	71241	69396
Oil Age	hrs	Client Info		0	0	0
Oil Changed		Client Info		N/A	N/A	Not Changd
Sample Status				NORMAL	NORMAL	NORMAL
WEAR METALS		method	limit/base	current	history1	history2
Iron	ppm	ASTM D5185m	>8	0	0	0
Chromium	ppm	ASTM D5185m	>2	0	0	0
Nickel	ppm	ASTM D5185m		0	0	0
Titanium	ppm	ASTM D5185m		0	0	0
Silver	ppm	ASTM D5185m	>2	0	0	0
Aluminum	ppm	ASTM D5185m	>3	0	0	<1
Lead	ppm	ASTM D5185m	>2	0	0	0
Copper	ppm	ASTM D5185m	>8	0	<1	0
Tin	ppm	ASTM D5185m	>4	<1	0	0
Vanadium	ppm	ASTM D5185m		0	<1	0
Cadmium	ppm	ASTM D5185m		0	0	0
ADDITIVES		method	limit/base	current	history1	history2
Boron	ppm	ASTM D5185m		0	0	0
Barium	ppm	ASTM D5185m		0	0	0
Molybdenum	ppm	ASTM D5185m		0	0	0
Manganese	ppm	ASTM D5185m		<1	0	<1
Magnesium	ppm	ASTM D5185m		0	0	0
Calcium	ppm	ASTM D5185m		1	0	0
Phosphorus	ppm	ASTM D5185m		0	0	0
Zinc	ppm	ASTM D5185m		0	0	0
Sulfur	ppm	ASTM D5185m	50	0	0	0
CONTAMINANTS		method	limit/base	current	history1	history2
Silicon	ppm	ASTM D5185m	>15	2	1	<1
Sodium	ppm	ASTM D5185m		<1	<1	0
Potassium	ppm	ASTM D5185m	>20	<1	0	0
Water	%	ASTM D6304	>0.01	0.001	0.007	0.004
ppm Water	ppm	ASTM D6304	>100	9	76	42.6
FLUID CLEANLIN	ESS	method	limit/base	current	history1	history2
Particles >4µm		ASTM D7647	>10000	3064	2312	681
Particles >6µm		ASTM D7647	>2500	724	545	183
Particles >14µm		ASTM D7647	>320	31	25	9
Particles >21µm		ASTM D7647	>80	6	5	3
Particles >38µm		ASTM D7647	>20	0	0	1
Particles >71µm		ASTM D7647	>4	0	0	0
Oil Cleanliness		ISO 4406 (c)	>20/18/15	19/17/12	18/16/12	17/15/10
FLUID DEGRADA	TION	method	limit/base	current	history1	history2
Acid Number (AN)	mg KOH/g	ASTM D974	0.005	0.014	0.01	0.015




OIL ANALYSIS REPORT



*****		um)		1				
				1	1			
Abnor	rmal		. ,	\prod	1			
	_	Bell Live	1	N	1			64
73	Aug21/14	Nov12/15	Dec21/17	/19	Apr8/20	ul26/21	Dec15/22	
	//3	Abnormal	Abnomal	Abnomal	Δbnomal	Δbnomal	Δbnomal	Abnormal 6µm 14µm 14µm 1 6µm 1



SAMPLE IMAGES	method

Color

Certificate L2367

Laboratory Sample No. Lab Number Unique Number: 10890600

Test Package : IND 2

: WearCheck USA - 501 Madison Ave., Cary, NC 27513 : USP0007745 : 06097747

Received : 22 Feb 2024 **Tested** : 25 Feb 2024 Diagnosed

: 25 Feb 2024 - Doug Bogart

CARGILL MEATS

SPRUCE GROVE, AB

Contact: SERVICE MANAGER

To discuss this sample report, contact Customer Service at 1-800-237-1369.

* - Denotes test methods that are outside of the ISO 17025 scope of accreditation.

Statements of conformity to specifications are based on the simple acceptance decision rule (JCGM 106:2012)

T: F: