

OIL ANALYSIS REPORT

Sample Rating Trend

Machine Id **427** Component Hydraulic System Fluid PROGARD ARCTIC AW 15 (--- QTS)

DIAGNOSIS

Recommendation

We advise that you check the fuel injection system. Oil and filter change at the time of sampling has been noted. We recommend an early resample to monitor this condition. Please specify the component make and model with your next sample.

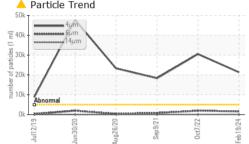
Wear

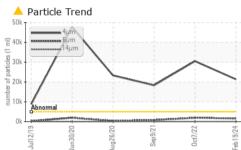
All component wear rates are normal.

Contamination

There is a moderate amount of silt (particulates < 14 microns in size) present in the oil. There is a high amount of fuel present in the oil. Tests confirm the presence of fuel in the oil.

Fluid Condition


The AN level is acceptable for this fluid. The oil is still serviceable provided that the contaminant(s) can be reduced to acceptable levels.


		Jul2019	Jun2020 Aug202	0 Sep2021 Oct2022	Feb2024	- Indiana - Marine
SAMPLE INFORM	MATION	method	limit/base		history1	history2
Sample Number		Client Info		RW0005143	RW0003969	RW0002425
Sample Date		Client Info		19 Feb 2024	07 Oct 2022	09 Sep 2021
Machine Age	hrs	Client Info		1182	1094	1032
Oil Age	hrs	Client Info		0	0	100
Oil Changed		Client Info		Changed	Not Changd	Not Changd
Sample Status				SEVERE	SEVERE	SEVERE
CONTAMINATIO	N	method	limit/base	current	history1	history2
Water		WC Method	>0.1	NEG	NEG	NEG
WEAR METALS		method	limit/base	current	history1	history2
Iron	ppm	ASTM D5185m	>20	4	2	<1
Chromium	ppm	ASTM D5185m	>10	<1	0	0
Nickel	ppm	ASTM D5185m	>10	<1	0	0
Titanium	ppm	ASTM D5185m		<1	0	0
Silver	ppm	ASTM D5185m		<1	0	<1
Aluminum	ppm	ASTM D5185m	>10	<1	<1	0
Lead	ppm	ASTM D5185m	>10	1	<1	<1
Copper	ppm	ASTM D5185m	>75	5	4	2
Tin	ppm	ASTM D5185m	>10	<1	0	<1
Antimony	ppm	ASTM D5185m				0
Vanadium	ppm	ASTM D5185m		0	0	0
Cadmium	ppm	ASTM D5185m		<1	0	<1
ADDITIVES		method	limit/base	current	history1	history2
Boron	ppm	ASTM D5185m		0	0	0
Barium	ppm	ASTM D5185m		5	0	0
Molybdenum	ppm	ASTM D5185m		<1	<1	<1
Manganese	ppm	ASTM D5185m		<1	<1	0
Magnesium	ppm	ASTM D5185m		2	1	0
Calcium	ppm	ASTM D5185m		79	64	63
Phosphorus	ppm	ASTM D5185m		318	341	335
Zinc	ppm	ASTM D5185m		381	371	357
Sulfur	ppm	ASTM D5185m		950	1078	821
CONTAMINANTS	;	method	limit/base	current	history1	history2
Silicon	ppm	ASTM D5185m	>20	6	<1	0
Sodium	ppm	ASTM D5185m		0	0	0
Potassium	ppm	ASTM D5185m	>20	<1	<1	0
Fuel	%	ASTM D3524	-	4 24.0	▲ 15.8	1 9.9
FLUID CLEANLIN	IESS	method	limit/base	current	history1	history2
Particles >4µm		ASTM D7647	>5000	<u> </u>	▲ 30532	▲ 18326
Particles >6µm		ASTM D7647	>1300	<u> </u>	947	831
ranicies >0µm		ASTM D7647	>160	17	54	54
Particles >14µm		ASTM D7647	>40	3	13	21
Particles >14µm Particles >21µm		ASTM D7647 ASTM D7647			13 1	21
		ASTM D7647 ASTM D7647 ASTM D7647	>10	3 0 0	13 1 0	

OIL ANALYSIS REPORT

40.0 Tuel Dilut	on		
35.0			
30.0			
25.0			and the second sec
20.0 20.0 15.0			
10.0 Severe			
5.0 - Abnormal			
0.04	21+		24
Aug26/20	Sep9/21	0ct7/22	Feb19/24
Aı			Ľ.
A Darticla T	rond		

FLUID DEGRADATION		method	limit/base	current	history1	history2
Acid Number (AN)	mg KOH/g	ASTM D8045		0.33	0.33	0.384
VISUAL		method	limit/base	current	history1	history2
White Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Yellow Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Precipitate	scalar	*Visual	NONE	NONE	NONE	NONE
Silt	scalar	*Visual	NONE	NONE	NONE	NONE
Debris	scalar	*Visual	NONE	NONE	NONE	NONE
Sand/Dirt	scalar	*Visual	NONE	NONE	NONE	NONE
Appearance	scalar	*Visual	NORML	NORML	NORML	NORML
Odor	scalar	*Visual	NORML	NORML	NORML	NORML
Emulsified Water	scalar	*Visual	>0.1	NEG	NEG	NEG
Free Water	scalar	*Visual		NEG	NEG	NEG
FLUID PROPERT	IES	method	limit/base	current	history1	history2
Visc @ 40°C	cSt	ASTM D445		16.2	16.2	16.0
SAMPLE IMAGES	6	method	limit/base	current	history1	history2

Color

Bottom

GRAPHS Ferrous Alloys Particle Count Acid Number 491,52 0.40 0.35 122,880 (B/H0.30 nicke 30,72 B 0.25 0 under Number Number Jul12/19 ug26/20 Feb19/24 . articles (per 1 ml ep9/21 1,920 - 말 0.10 480 0.05 Non-ferrous Metals 10 0.00 120 sep 9/21 ua26/20 un30/20 30 0 Viscosity @ 40°C Jul12/19 0ct7/22 ua26/20 Sen 9/71 Feb 19/24 28 26 24 Viscosity @ 40°C (B/H0.40 Acid Number (j_22 (d)_20 18 30 () 25 0+ 20 Bu Abnorma ^ਲੋਂ 15 Abnorma 16 14 Abnorma 10 Acid N 0.00 Sep9/21. 0ct7/22 -Feb19/24. Aug26/20 -Sep9/21. 12 Aug26/20 un30/20 lun30/20 un30/20 ua26/20 en9/71 : WearCheck USA - 501 Madison Ave., Cary, NC 27513 NEWKIRK ELECTRIC Laboratory Sample No. : RW0005143 Received : 23 Feb 2024 1875 ROBERTS ST. Lab Number : 06098357 Tested : 29 Feb 2024 MUSKEGON, MI Unique Number : 10896587 Diagnosed : 29 Feb 2024 - Wes Davis Test Package : MOB 2 (Additional Tests: PercentFuel) Contact: ERIC KING Certificate L2367 To discuss this sample report, contact Customer Service at 1-800-237-1369. ewking@newkirk-electric.com T: (231)206-6131

* - Denotes test methods that are outside of the ISO 17025 scope of accreditation.

Statements of conformity to specifications are based on the simple acceptance decision rule (JCGM 106:2012)

Contact/Location: ERIC KING - NEWMUS

F: (231)724-4090

US 49442

0ct7/22 -

20 4406:1999 Clear

14

12 8

Feb19/24.