

OIL ANALYSIS REPORT

Sample Rating Trend

C-50 (S/N 4235555)

Component Gearbox

Fluid MOBIL SHC 632 (--- GAL)

DIAGNOSIS

Recommendation

Resample at the next service interval to monitor.

Wear

All component wear rates are normal.

Contamination

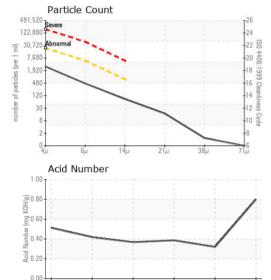
The amount and size of particulates present in the system are acceptable. There is no indication of any contamination in the oil.

Fluid Condition

Viscosity of sample indicates oil is within ISO 220 range, advise investigate. Confirm oil type. The AN level is acceptable for this fluid.

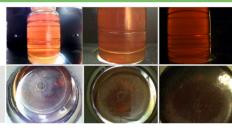
		Pag2010	Aug2015 0002015	1602020 0002022	1002027	
SAMPLE INFORMA	ATION	method	limit/base	current	history1	history2
Sample Number		Client Info		WC0903062	WC0733858	WC0430466
Sample Date		Client Info		01 Feb 2024	10 Jun 2022	05 Feb 2020
Machine Age	hrs	Client Info		0	0	0
Oil Age	hrs	Client Info		0	0	0
Oil Changed		Client Info		N/A	N/A	N/A
Sample Status				ATTENTION	NORMAL	NORMAL
CONTAMINATION		method	limit/base	current	history1	history2
Water		WC Method	>0.2	NEG	NEG	NEG
WEAR METALS		method	limit/base	current	history1	history2
Iron	ppm	ASTM D5185m	>200	2	11	6
Chromium	ppm	ASTM D5185m	>15	<1	<1	0
Nickel	ppm	ASTM D5185m	>15	<1	0	0
Titanium	ppm	ASTM D5185m		<1	0	0
Silver	ppm	ASTM D5185m		<1	0	0
Aluminum	ppm	ASTM D5185m	>25	<1	<1	<1
Lead	ppm	ASTM D5185m	>100	<1	0	0
Copper	ppm	ASTM D5185m	>200	1	2	3
Tin I	ppm	ASTM D5185m	>25	1	0	0
Antimony	ppm	ASTM D5185m	>5			0
Vanadium	ppm	ASTM D5185m		0	0	0
Cadmium	ppm	ASTM D5185m		<1	0	0
ADDITIVES		method	limit/base	current	history1	history2
Boron	ppm	ASTM D5185m		28	0	0
Barium	ppm	ASTM D5185m		5	0	0
Molybdenum	ppm	ASTM D5185m		<1	0	<1
Manganese	ppm	ASTM D5185m		<1	0	<1
Magnesium	ppm	ASTM D5185m		<1	0	0
Calcium	ppm	ASTM D5185m		<1	<1	0
Phosphorus	ppm	ASTM D5185m		312	386	350
Zinc	ppm	ASTM D5185m		7	3	1
Sulfur	ppm	ASTM D5185m		11408	50	11
CONTAMINANTS		method	limit/base	current	history1	history2
Silicon	ppm	ASTM D5185m	>50	6	8	8
	ppm	ASTM D5185m		0	0	0
	ppm	ASTM D5185m	>20	1	0	<1
FLUID CLEANLINE	SS	method	limit/base	current	history1	history2
Particles >4µm		ASTM D7647	>20000	2634		
Particles >6µm		ASTM D7647	>5000	408		
Particles >14µm		ASTM D7647	>640	73		
Particles >21µm		ASTM D7647	>160	15		
Particles >38µm		ASTM D7647	>40	1		
· · r.						
Particles >71µm		ASTM D7647	>10	0		

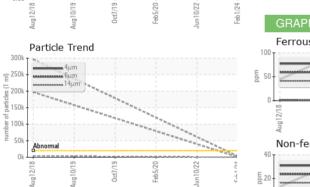
ISO 4406 (c) >21/19/16


Oil Cleanliness

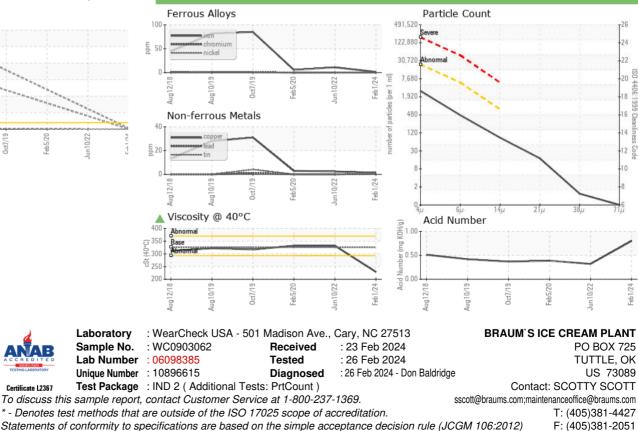
19/16/13

OIL ANALYSIS REPORT


Particl	e Trenc	I			
300k	4 μm				
€ 250k -	• 6μm • 14μm				
200k	An and an an an an an an	a na	· .		
jo 100k -		And the part of th	Water Law	·	
50k Abnorma			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
Ok Lesses	19	0ct7/19 -	/20	/22	Feb1/24
Aug12/18	Aug10/19	0ct7	Feb5/20	Jun10	Feb1



FLUID DEGRADA	TION	method				history2
Acid Number (AN)	mg KOH/g	ASTM D8045		0.80	0.32	0.387
VISUAL		method	limit/base	current	history1	history2
White Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Yellow Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Precipitate	scalar	*Visual	NONE	NONE	NONE	NONE
Silt	scalar	*Visual	NONE	NONE	NONE	NONE
Debris	scalar	*Visual	NONE	NONE	NONE	NONE
Sand/Dirt	scalar	*Visual	NONE	NONE	NONE	NONE
Appearance	scalar	*Visual	NORML	NORML	NORML	NORML
Odor	scalar	*Visual	NORML	NORML	NORML	NORML
Emulsified Water	scalar	*Visual	>0.2	NEG	NEG	NEG
Free Water	scalar	*Visual		NEG	NEG	NEG
FLUID PROPERT	IES	method	limit/base	current	history1	history2
Visc @ 40°C	cSt	ASTM D445	325.8	229	332	332
SAMPLE IMAGES	6	method	limit/base	current	history1	history2


Color

Bottom

Feb5/20

Statements of conformity to specifications are based on the simple acceptance decision rule (JCGM 106:2012)

Certificate L2367

Ø

Contact/Location: SCOTTY SCOTT - BRATUTOK