

OIL ANALYSIS REPORT

Sample Rating Trend

NORMAL

TYSVIC 14 (S/N 0197JJ)

Component

Refrigeration Compressor

USPI ALT-68 SC (--- GAL)

DIAGNOSIS

Recommendation

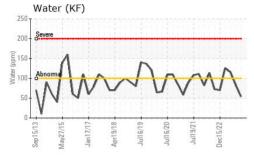
Resample at the next service interval to monitor.

Wear

All component wear rates are normal.

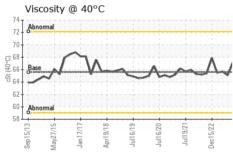
Contamination

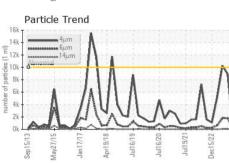
There is no indication of any contamination in the oil. The amount and size of particulates present in the system are acceptable.


Fluid Condition

The AN level is acceptable for this fluid. The condition of the oil is suitable for further service.

2013 May2015 Jan2017 Apr2018 Jul2019 Jul2020 Jul2021 Ow-2022							
SAMPLE INFORM	MATION	method	limit/base	current	history1	history2	
Sample Number		Client Info		USP0007651	USP0003471	USP243291	
Sample Date		Client Info		22 Feb 2024	13 Nov 2023	29 May 2023	
Machine Age	hrs	Client Info		0	0	0	
Oil Age	hrs	Client Info		0	0	0	
Oil Changed		Client Info		N/A	N/A	N/A	
Sample Status				NORMAL	NORMAL	ATTENTION	
WEAR METALS		method	limit/base	current	history1	history2	
Iron	ppm	ASTM D5185m	>8	0	2	1	
Chromium	ppm	ASTM D5185m	>2	0	<1	0	
Nickel	ppm	ASTM D5185m		<1	<1	<1	
Titanium	ppm	ASTM D5185m		0	<1	0	
Silver	ppm	ASTM D5185m	>2	0	0	0	
Aluminum	ppm	ASTM D5185m	>3	<1	0	0	
Lead	ppm	ASTM D5185m	>2	<1	0	<1	
Copper	ppm	ASTM D5185m	>8	<1	0	0	
Tin	ppm	ASTM D5185m	>4	0	0	0	
Vanadium	ppm	ASTM D5185m		0	0	0	
Cadmium	ppm	ASTM D5185m		0	0	0	
ADDITIVES		method	limit/base	current	history1	history2	
Boron	ppm	ASTM D5185m		0	0	0	
Barium	ppm	ASTM D5185m		0	0	0	
Molybdenum	ppm	ASTM D5185m		0	0	0	
Manganese	ppm	ASTM D5185m		<1	0	<1	
Magnesium	ppm	ASTM D5185m		0	<1	<1	
Calcium	ppm	ASTM D5185m		0	0	0	
Phosphorus	ppm	ASTM D5185m		<1	0	<1	
Zinc	ppm	ASTM D5185m		0	0	0	
Sulfur	ppm	ASTM D5185m	50	14	0	0	
CONTAMINANTS		method	limit/base	current	history1	history2	
Silicon	ppm	ASTM D5185m	>15	<1	<1	0	
Sodium	ppm	ASTM D5185m		0	0	<1	
Potassium	ppm	ASTM D5185m		<1	<1	1	
Water	%	ASTM D6304	>0.01	0.005	0.008	0.011	
ppm Water	ppm	ASTM D6304	>100	54	84.0	115.8	
FLUID CLEANLIN	ESS	method	limit/base	current	history1	history2	
Particles >4µm		ASTM D7647	>10000	506	8918	▲ 10259	
Particles >6μm		ASTM D7647	>2500	125	1786	1792	
Particles >14μm		ASTM D7647	>320	8	54	49	
Particles >21µm		ASTM D7647	>80	3	10	8	
Particles >38μm		ASTM D7647	>20	0	2	0	
Particles >71μm		ASTM D7647	>4	0	0	0	
Oil Cleanliness		ISO 4406 (c)	>20/18/15	16/14/10	20/18/13	1 21/18/13	
FLUID DEGRADA	TION	method	limit/base	current	history1	history2	
Acid Number (AN)	mg KOH/g	ASTM D974	0.005	0.014	0.013	0.015	




OIL ANALYSIS REPORT

Par	ticle T	rend						
14k -	4µ	m						
T 12k + Abnus 10k	14 <i>j</i> ormal	zm	1					M
Bk-		1.	11	1			. /	1
0 6k	٨		M	1	٨		ΛI	1
2k	1	H	N	Y	JV	V	V	1
0k Ts/13 40	2/15	71/7	Apr19/18	e1/91lnf	Jul16/20	17/61Inf	5/22	-
Sep1	May27/15	Jan	Apri	Juli	Juli	Jul	Dec15/2	

1		1		\wedge	ΛΛ
Ųv.		6		V	7
	W	Apr19718	Apr19/18	Jan 17/17 Apri 9/18 Juli 6/19 Juli 6/20	Auti 8/10



VISUAL		method	limit/base	current	history1	history2
White Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Yellow Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Precipitate	scalar	*Visual	NONE	NONE	NONE	NONE
Silt	scalar	*Visual	NONE	NONE	NONE	NONE
Debris	scalar	*Visual	NONE	NONE	LIGHT	NONE
Sand/Dirt	scalar	*Visual	NONE	NONE	NONE	NONE
Appearance	scalar	*Visual	NORML	NORML	NORML	NORML
Odor	scalar	*Visual	NORML	NORML	NORML	NORML
Emulsified Water	scalar	*Visual	>0.01	NEG	NEG	NEG
Free Water	scalar	*Visual		NEG	NEG	NEG

FLUID PROPER	THES	method	ilmit/base		nistory i	nistory2
Visc @ 40°C	cSt	ASTM D445	65.6	67.1	65.1	65.7

SAMPLE IMAGES	method		history
		g, #14B	NH3.

Certificate L2367

Laboratory Sample No.

: USP0007651 Lab Number : 06099188 Unique Number : 10897418 Test Package : IND 2

: WearCheck USA - 501 Madison Ave., Cary, NC 27513 Received : 23 Feb 2024 **Tested** : 26 Feb 2024

Diagnosed : 26 Feb 2024 - Doug Bogart

TYSON - VICKSBURG-USP - TYSVICPRO

1785 INTERPLEX DR VICKSBURG, MS US 39183

Contact: RICK DUNN

To discuss this sample report, contact Customer Service at 1-800-237-1369.

* - Denotes test methods that are outside of the ISO 17025 scope of accreditation.

Statements of conformity to specifications are based on the simple acceptance decision rule (JCGM 106:2012)

T:

F: