

OIL ANALYSIS REPORT

Sample Rating Trend

ISO

LC-2 (S/N 3221372) Component

Refrigeration Compressor

USPI ALT-68 SC (--- GAL)

DIAGNOSIS

▲ Recommendation

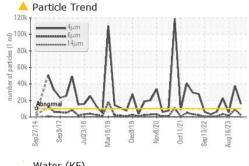
Resample at the next service interval to monitor.

Moor

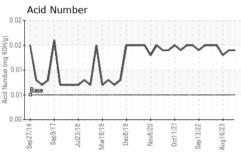
All component wear rates are normal.

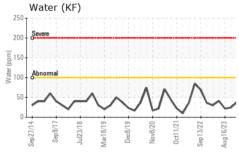
Contamination

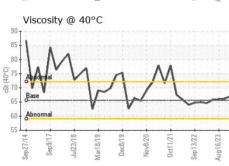
There is a moderate amount of silt (particulates < 6 microns in size) present in the oil.

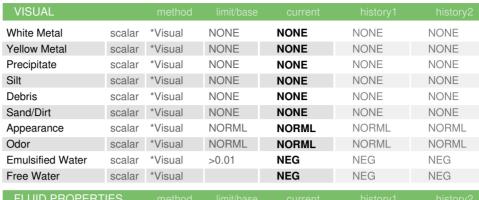

Fluid Condition

The AN level is acceptable for this fluid. The condition of the oil is suitable for further service.


		p2014 Sep201	7 Jul2018 Mar2019 De	2019 Nov2020 Oct2021 Sep2022	Aug2023	
SAMPLE INFORM	MATION	method	limit/base	current	history1	history2
Sample Number		Client Info		USP0007699	USP0003426	USP244618
Sample Date		Client Info		31 Jan 2024	07 Nov 2023	16 Aug 2023
Machine Age	hrs	Client Info		12312	11388	10379
Oil Age	hrs	Client Info		0	0	0
Oil Changed		Client Info		N/A	N/A	N/A
Sample Status				ATTENTION	ABNORMAL	NORMAL
WEAR METALS		method	limit/base	current	history1	history2
Iron	ppm	ASTM D5185m	>8	3	0	2
Chromium	ppm	ASTM D5185m	>2	0	0	0
Nickel	ppm	ASTM D5185m		<1	0	0
Titanium	ppm	ASTM D5185m		0	0	0
Silver	ppm	ASTM D5185m	>2	0	0	0
Aluminum	ppm	ASTM D5185m	>3	<1	0	0
Lead	ppm	ASTM D5185m	>2	<1	0	0
Copper	ppm	ASTM D5185m	>8	<1	0	0
Tin	ppm	ASTM D5185m	>4	0	0	0
Vanadium	ppm	ASTM D5185m		0	0	0
Cadmium	ppm	ASTM D5185m		0	0	0
ADDITIVES		method	limit/base	current	history1	history2
Boron	ppm	ASTM D5185m		0	0	0
Barium	ppm	ASTM D5185m		0	0	0
Molybdenum	ppm	ASTM D5185m		0	0	0
Manganese	ppm	ASTM D5185m		<1	0	0
Magnesium	ppm	ASTM D5185m		<1	0	0
Calcium	ppm	ASTM D5185m		<1	0	0
Phosphorus	ppm	ASTM D5185m		0	0	<1
Zinc	ppm	ASTM D5185m		0	0	0
Sulfur	ppm	ASTM D5185m	50	15	0	0
CONTAMINANTS		method	limit/base	current	history1	history2
Silicon	ppm	ASTM D5185m	>15	3	2	2
Sodium	ppm	ASTM D5185m		<1	<1	0
Potassium	ppm	ASTM D5185m	>20	1	<1	<1
Water	%	ASTM D6304	>0.01	0.003	0.002	0.002
ppm Water	ppm	ASTM D6304	>100	38	24.3	21.7
FLUID CLEANLIN	ESS	method	limit/base	current	history1	history2
Particles >4µm		ASTM D7647	>10000	15903	▲ 37674	5788
Particles >6µm		ASTM D7647	>2500	2102	<u></u> 9166	1320
Particles >14µm		ASTM D7647	>320	10	243	57
Particles >21µm		ASTM D7647	>80	1	33	11
Particles >38µm		ASTM D7647	>20	0	0	1
Particles >71µm		ASTM D7647	>4	0	0	0
Oil Cleanliness		ISO 4406 (c)	>20/18/15	2 1/18/10	<u>22/20/15</u>	20/18/13
FLUID DEGRADA	TION	method	limit/base	current	history1	history2
Acid Number (AN)	mg KOH/g	ASTM D974	0.005	0.014	0.014	0.013

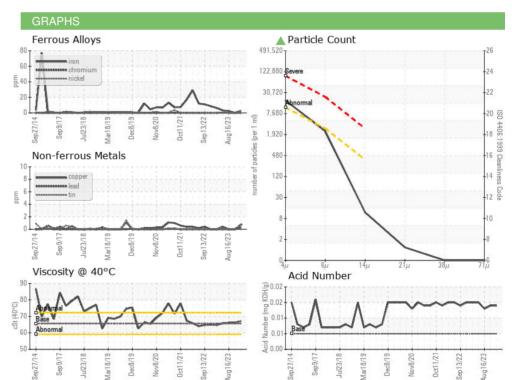



OIL ANALYSIS REPORT



Water	(KF)			
200 Severe				
Mater (bbm)				
> 100 T U				
50	_^	^ /	Λ.	\wedge
50	√ ^	\sim	W	1
	Jul23/18		Nov8/20 Oct11/21	Sep13/22 - Aug16/23 -




I LOID I NOI LINI	ILO	memou			HISTORY	Historyz
Visc @ 40°C	cSt	ASTM D445	65.6	67.1	66.2	66.0

SAMPLE IMAGES	metnoa

Color

Bottom

Laboratory Sample No. Lab Number

Unique Number : 10897453

: USP0007699

: WearCheck USA - 501 Madison Ave., Cary, NC 27513 : 06099223

Received **Tested** Diagnosed

: 23 Feb 2024 : 26 Feb 2024

: 26 Feb 2024 - Doug Bogart

ADVANCE PIERRE FOODS - ENTERPRISE PLANT ENID, OK

Test Package : IND 2 Certificate L2367 To discuss this sample report, contact Customer Service at 1-800-237-1369.

* - Denotes test methods that are outside of the ISO 17025 scope of accreditation.

Statements of conformity to specifications are based on the simple acceptance decision rule (JCGM 106:2012)

US 73701

Contact:

T: F: