

# **OIL ANALYSIS REPORT**

## Sample Rating Trend





# TYSLOG RECYCLED NH3 (S/N U154300323)

**Refrigeration Compressor** 

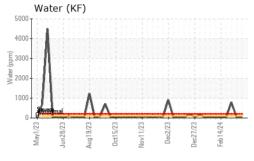
USPI 1009-68 SC (--- GAL)

## Recommendation

This is a baseline read-out on the submitted sample. BARREL 32 AFTER

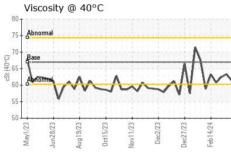
## Contamination

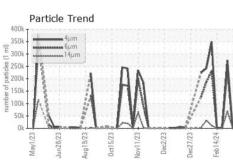
There is no indication of any contamination in the oil. The amount and size of particulates present in the system are acceptable.

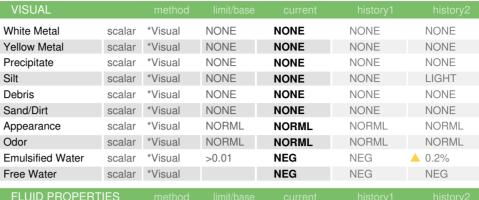

## **Fluid Condition**

The AN level is acceptable for this fluid. The condition of the oil is suitable for further service.

|                  |          | y2023 Jun20  | 23 Aug2023 Oct2023 | Nov2023 Dec2023 B | eb2024      |                 |
|------------------|----------|--------------|--------------------|-------------------|-------------|-----------------|
| SAMPLE INFORM    | MATION   | method       | limit/base         | current           | history1    | history2        |
| Sample Number    |          | Client Info  |                    | USP0006079        | USP0007476  | USP0007494      |
| Sample Date      |          | Client Info  |                    | 17 Mar 2024       | 03 Mar 2024 | 28 Feb 2024     |
| Machine Age      | hrs      | Client Info  |                    | 0                 | 0           | 0               |
| Oil Age          | hrs      | Client Info  |                    | 0                 | 0           | 0               |
| Oil Changed      |          | Client Info  |                    | N/A               | N/A         | N/A             |
| Sample Status    |          |              |                    | NORMAL            | NORMAL      | ABNORMAL        |
| WEAR METALS      |          | method       | limit/base         | current           | history1    | history2        |
| Iron             | ppm      | ASTM D5185m  | >8                 | 0                 | 0           | <u></u> 324     |
| Chromium         | ppm      | ASTM D5185m  | >2                 | 0                 | 0           | 0               |
| Nickel           | ppm      | ASTM D5185m  |                    | 0                 | 0           | 0               |
| Titanium         | ppm      | ASTM D5185m  |                    | 0                 | 0           | 0               |
| Silver           | ppm      | ASTM D5185m  | >2                 | 0                 | 0           | 0               |
| Aluminum         | ppm      | ASTM D5185m  | >3                 | 0                 | 0           | 0               |
| Lead             | ppm      | ASTM D5185m  | >2                 | 0                 | 0           | 0               |
| Copper           | ppm      | ASTM D5185m  | >8                 | 0                 | <1          | 0               |
| Tin              | ppm      | ASTM D5185m  | >4                 | 0                 | 0           | 0               |
| Vanadium         | ppm      | ASTM D5185m  |                    | 0                 | 0           | 0               |
| Cadmium          | ppm      | ASTM D5185m  |                    | 0                 | 0           | 0               |
| ADDITIVES        |          | method       | limit/base         | current           | history1    | history2        |
| Boron            | ppm      | ASTM D5185m  |                    | 0                 | 0           | 0               |
| Barium           | ppm      | ASTM D5185m  |                    | 0                 | 0           | 0               |
| Molybdenum       | ppm      | ASTM D5185m  |                    | 0                 | 0           | 0               |
| Manganese        | ppm      | ASTM D5185m  |                    | 0                 | <1          | <1              |
| Magnesium        | ppm      | ASTM D5185m  |                    | 0                 | <1          | 0               |
| Calcium          | ppm      | ASTM D5185m  |                    | 0                 | 0           | <1              |
| Phosphorus       | ppm      | ASTM D5185m  |                    | 0                 | 0           | 1               |
| Zinc             | ppm      | ASTM D5185m  |                    | 0                 | 0           | 0               |
| Sulfur           | ppm      | ASTM D5185m  | 50                 | 0                 | 0           | 15              |
| CONTAMINANTS     |          | method       | limit/base         | current           | history1    | history2        |
| Silicon          | ppm      | ASTM D5185m  | >15                | <1                | 1           | 2               |
| Sodium           | ppm      | ASTM D5185m  |                    | 0                 | 1           | <1              |
| Potassium        | ppm      | ASTM D5185m  | >20                | 0                 | 0           | 0               |
| Water            | %        | ASTM D6304   | >0.01              | 0.002             | 0.002       | ▲ 0.079         |
| ppm Water        | ppm      | ASTM D6304   | >100               | 22                | 22          | <b>△</b> 790    |
| FLUID CLEANLIN   | ESS      | method       | limit/base         | current           | history1    | history2        |
| Particles >4µm   |          | ASTM D7647   |                    | 3074              | 969         | 273220          |
| Particles >6µm   |          | ASTM D7647   | >2500              | 655               | 313         | <u>^</u> 237891 |
| Particles >14µm  |          | ASTM D7647   | >320               | 20                | 16          | <b>△</b> 69318  |
| Particles >21µm  |          | ASTM D7647   |                    | 3                 | 2           | <b>▲</b> 8957   |
| Particles >38µm  |          | ASTM D7647   | >20                | 0                 | 1           | 0               |
| Particles >71µm  |          | ASTM D7647   |                    | 0                 | 0           | 0               |
| Oil Cleanliness  |          | ISO 4406 (c) | >/18/15            | 19/17/11          | 17/15/11    | △ 25/25/23      |
| FLUID DEGRADA    | TION     | method       | limit/base         | current           | history1    | history2        |
| Acid Number (AN) | mg KOH/g | ASTM D974    | 0.005              | 0.014             | 0.014       | △ 0.154         |





## **OIL ANALYSIS REPORT**



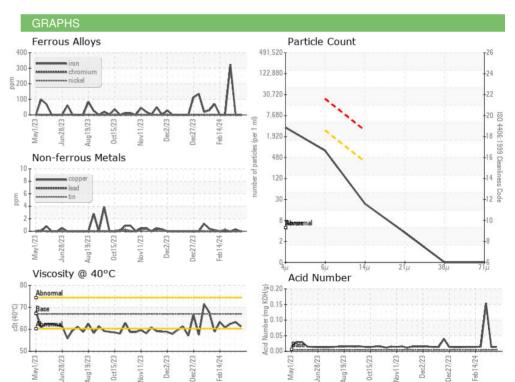

| Pa:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | rticle T | rend     |           |         |        |          |          |   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|-----------|---------|--------|----------|----------|---|
| 350k -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4μ<br>6μ | m<br>m   |           |         |        |          | 1        |   |
| © 300k - |          | ım j     |           |         |        |          | Λ.       |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | 4        | -1        | AF      |        | 1        | 1        |   |
| 200k - 150k - 150k - 100k - 100k - 100k - 100k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 1        |           | M       |        | -1/      |          |   |
| 夏 100k - 50k -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 17       |           | W       |        |          | IA       |   |
| 0k 🔀                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u> </u> | -        | and the   | 777     | m      | 2        | 711      | _ |
| May1/23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Jun28/23 | Aug19/23 | Oct 15/23 | Nov11/2 | Dec2/2 | Dec27/23 | Feb14/24 |   |
| ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ್        | A        | 0         | Ź       |        | 0        | 正        |   |










| FLUID PROPER | THES | method    | ilmii/base | current | nistory i | nistory∠ |
|--------------|------|-----------|------------|---------|-----------|----------|
| Visc @ 40°C  | cSt  | ASTM D445 | 67         | 61.31   | 63.3      | 62.5     |

| 0.4.4.0.4  |     |      | 0=0   |  |
|------------|-----|------|-------|--|
| SAMPL      | - 1 | MA   | GES   |  |
| C/ tivii L | -   | 1417 | GEO . |  |

Color

**Bottom** 









Certificate L2367

Laboratory Sample No. Lab Number

: 06121620

: WearCheck USA - 501 Madison Ave., Cary, NC 27513 : USP0006079

Unique Number: 10930453 Diagnosed Test Package : IND 2

Received : 18 Mar 2024 **Tested** : 21 Mar 2024

: 21 Mar 2024 - Doug Bogart

TYSON-LOGANSPORT-USP

LOGANSPORT, IN US

T: (402)423-6375

F: (402)423-6661

Contact: RICK DUVAL

To discuss this sample report, contact Customer Service at 1-800-237-1369.

\* - Denotes test methods that are outside of the ISO 17025 scope of accreditation.

Statements of conformity to specifications are based on the simple acceptance decision rule (JCGM 106:2012)

Report Id: TYSLOG [WUSCAR] 06121620 (Generated: 03/21/2024 19:38:11) Rev: 1

Contact/Location: RICK DUVAL - TYSLOG