

OIL ANALYSIS REPORT

PROCESS PROCESS SULLAIR TYSAMAP PR-1 SUL (S/N 006-97002189)

Refrigeration Compressor

USPI 1009-68 SC (90 GAL)

DIAGNOSIS

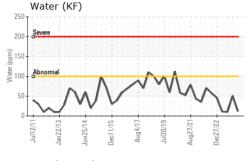
Recommendation

Resample at the next service interval to monitor.

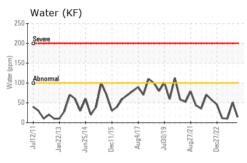
All component wear rates are normal.

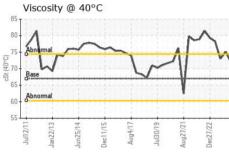
Contamination

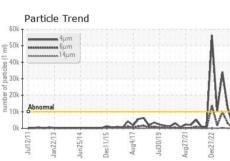
There is no indication of any contamination in the oil. The amount and size of particulates present in the system are acceptable.


Fluid Condition

The AN level is acceptable for this fluid. The condition of the oil is suitable for further service.

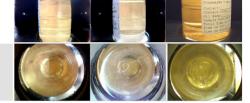

		il2011 Jan20	13 Jun2014 Dec2015	Aug2017 Jul2019 Aug2021 (Dec2022	
SAMPLE INFORM	MATION	method	limit/base	current	history1	history2
Sample Number		Client Info		USP0006114	USP0003553	USP0001039
Sample Date		Client Info		06 Mar 2024	14 Nov 2023	21 Jul 2023
Machine Age	hrs	Client Info		6039	3437	718
Oil Age	hrs	Client Info		0	0	0
Oil Changed		Client Info		N/A	N/A	N/A
Sample Status				NORMAL	ATTENTION	ABNORMAL
WEAR METALS		method	limit/base	current	history1	history2
Iron	ppm	ASTM D5185m	>8	4	1	<1
Chromium	ppm	ASTM D5185m	>2	<1	<1	0
Nickel	ppm	ASTM D5185m		0	0	0
Titanium	ppm	ASTM D5185m		0	0	0
Silver	ppm	ASTM D5185m	>2	0	0	0
Aluminum	ppm	ASTM D5185m	>3	0	1	0
Lead	ppm	ASTM D5185m	>2	0	0	0
Copper	ppm	ASTM D5185m	>8	0	0	0
Tin	ppm	ASTM D5185m	>4	0	0	0
Vanadium	ppm	ASTM D5185m		0	0	0
Cadmium	ppm	ASTM D5185m		0	0	0
ADDITIVES		method	limit/base	current	history1	history2
Boron	ppm	ASTM D5185m		0	0	0
Barium	ppm	ASTM D5185m		0	0	1
Molybdenum	ppm	ASTM D5185m		0	0	0
Manganese	ppm	ASTM D5185m		<1	0	0
Magnesium	ppm	ASTM D5185m		1	0	0
Calcium	ppm	ASTM D5185m		0	<1	0
Phosphorus	ppm	ASTM D5185m		0	0	0
Zinc	ppm	ASTM D5185m		0	0	0
Sulfur	ppm	ASTM D5185m	50	0	0	9
CONTAMINANTS	;	method	limit/base	current	history1	history2
Silicon	ppm	ASTM D5185m	>15	0	0	0
Sodium	ppm	ASTM D5185m		1	0	0
Potassium	ppm	ASTM D5185m	>20	0	1	1
Water	%	ASTM D6304	>0.01	0.001	0.005	0.001
ppm Water	ppm	ASTM D6304	>100	12	51	9.9
FLUID CLEANLIN	IESS	method	limit/base	current	history1	history2
Particles >4µm		ASTM D7647	>10000	1744	12319	<u></u> 34104
Particles >6µm		ASTM D7647	>2500	293	3103	<u></u> 10013
Particles >14µm		ASTM D7647	>320	16	63	309
Particles >21µm		ASTM D7647	>80	4	5	33
Particles >38µm		ASTM D7647	>20	1	0	0
Particles >71µm		ASTM D7647	>4	0	0	0
Oil Cleanliness		ISO 4406 (c)	>20/18/15	18/15/11	21/19/13	<u>22/21/15</u>
FLUID DEGRADA	ATION	method	limit/base	current	history1	history2
Acid Number (AN)	mg KOH/g	ASTM D974	0.005	0.014	0.01	0.015

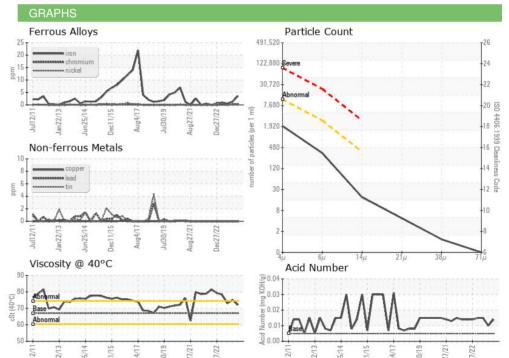



OIL ANALYSIS REPORT



Abnormal	- *************************************	iμm		4
Abnomal	-	4μm		A
Abnomal				
Abnormal				
	Abnormal			A
The state of the s				manufacturism and a second




I LOID I HOI LITT	ILO					
Visc @ 40°C	cSt	ASTM D445	67	72.1	75.1	73.0

Color	
00101	

SAMPLE IMAGES

Bottom

Laboratory Sample No. Lab Number

: WearCheck USA - 501 Madison Ave., Cary, NC 27513 : USP0006114

: 06123176 Unique Number: 10937327

Received : 19 Mar 2024 **Tested**

: 20 Mar 2024 : 21 Mar 2024 - Doug Bogart Diagnosed

US Contact: RANDY INGRAM

TYSON - AMARILLO-USP

Test Package : IND 2 Certificate L2367 To discuss this sample report, contact Customer Service at 1-800-237-1369.

* - Denotes test methods that are outside of the ISO 17025 scope of accreditation.

Statements of conformity to specifications are based on the simple acceptance decision rule (JCGM 106:2012)

F: (806)352-6946 Contact/Location: RANDY INGRAM - TYSAMA

T: (806)355-7732

 $AMARILLO,\,TX$