

OIL ANALYSIS REPORT

Sample Rating Trend

NORMAL

Machine Id FES 7029 - HS 6 FES-270 (S/N 2011433) Component

Refrigeration Compressor

USPI 1009-68 SC (70 GAL)

DIAGNOSIS

Recommendation

Resample at the next service interval to monitor.

Wear

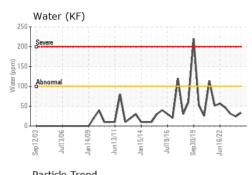
All component wear rates are normal.

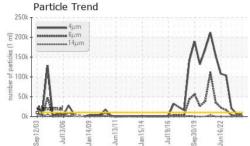
Contamination

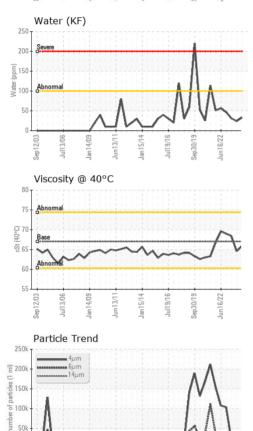
There is no indication of any contamination in the oil. The amount and size of particulates present in the system are acceptable.

Fluid Condition

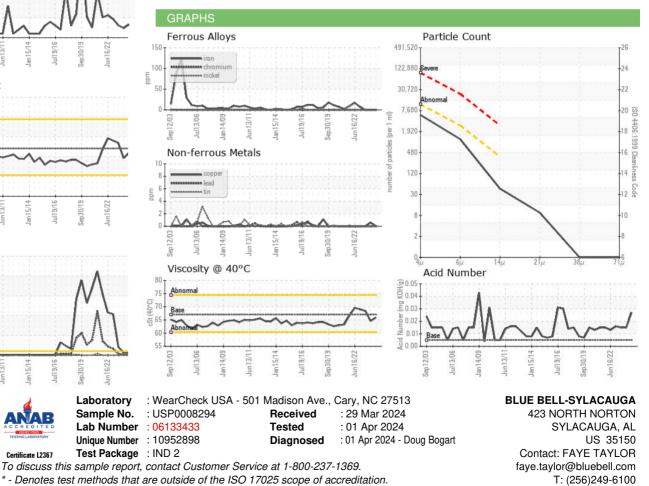
The AN level is acceptable for this fluid. The condition of the oil is suitable for further service.


SAMPLE INFORM	ATION	method	limit/base	current	history1	history2
Sample Number		Client Info		USP0008294	USP0004520	USP250166
Sample Date		Client Info		20 Mar 2024	21 Dec 2023	15 Jun 2023
Machine Age	hrs	Client Info		37256	35066	30547
Oil Age	hrs	Client Info		0	0	0
Oil Changed		Client Info		N/A	N/A	N/A
Sample Status				NORMAL	NORMAL	ABNORMAL
WEAR METALS		method	limit/base	current	history1	history2
Iron	ppm	ASTM D5185m	>8	0	0	0
Chromium	ppm	ASTM D5185m	>2	<1	0	0
Nickel	ppm	ASTM D5185m		<1	0	0
Titanium	ppm	ASTM D5185m		0	0	0
Silver	ppm	ASTM D5185m	>2	0	0	0
Aluminum	ppm	ASTM D5185m	>3	<1	0	0
Lead	ppm	ASTM D5185m	>2	0	0	0
Copper	ppm	ASTM D5185m	>8	0	<1	0
Tin	ppm	ASTM D5185m	>4	0	0	0
Vanadium	ppm	ASTM D5185m		0	0	0
Cadmium	ppm	ASTM D5185m		0	0	0
ADDITIVES		method	limit/base	current	history1	history2
Boron	ppm	ASTM D5185m		0	0	0
Barium	ppm	ASTM D5185m		0	0	0
Molybdenum	ppm	ASTM D5185m		0	0	0
Manganese	ppm	ASTM D5185m		0	<1	0
Magnesium	ppm	ASTM D5185m		0	0	0
Calcium	ppm	ASTM D5185m		0	1	0
Phosphorus	ppm	ASTM D5185m		0	<1	0
Zinc	ppm	ASTM D5185m		0	0	0
Sulfur	ppm	ASTM D5185m	50	0	9	0
CONTAMINANTS		method	limit/base	current	history1	history2
Silicon	ppm	ASTM D5185m	>15	0	<1	0
Sodium	ppm	ASTM D5185m		<1	2	0
Potassium	ppm	ASTM D5185m	>20	<1	0	0
Water	%	ASTM D6304	>0.01	0.003	0.002	0.003
ppm Water	ppm	ASTM D6304	>100	33	24	30.8
FLUID CLEANLIN	IESS	method	limit/base	current	history1	history2
Particles >4µm		ASTM D7647	>10000	5008	6443	A 20837
Particles >6µm		ASTM D7647	>2500	1013	1305	93485
Particles >14µm		ASTM D7647	>320	39	29	102
Particles >21µm		ASTM D7647	>80	8	5	17
Particles >38µm		ASTM D7647	>20	0	0	0
Particles >71µm		ASTM D7647	>4	0	0	0
Oil Cleanliness		ISO 4406 (c)	>20/18/15	20/17/12	20/18/12	2 2/19/14
FLUID DEGRADA	TION	method	limit/base	current	history1	history2
Acid Number (AN)	mg KOH/g	ASTM D974	0.005	0.027	0.015	0.015


Report Id: BLUSYL [WUSCAR] 06133433 (Generated: 04/01/2024 21:49:31) Rev: 1


Contact/Location: FAYE TAYLOR - BLUSYL

OIL ANALYSIS REPORT



		沃		A	MA	B	Lab Sar	oratory nple No. Number	:
E SUK	Sep12/03	mal A	Jan 14/09	un13/11	Jan 15/14	11/61lnp	Sep30/19	un16/22	
(jm 1) sabitited for hadmun 200k (jm 1) sabitited for hadmun 200k (jm 1) solved the second se							N	Λ	rC+ /40°C1
250k		ticle T	rend						

Certificate L2367

VISUAL		method	limit/base	current	history1	history2
White Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Yellow Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Precipitate	scalar	*Visual	NONE	NONE	NONE	NONE
Silt	scalar	*Visual	NONE	NONE	NONE	NONE
Debris	scalar	*Visual	NONE	NONE	NONE	LIGHT
Sand/Dirt	scalar	*Visual	NONE	NONE	NONE	NONE
Appearance	scalar	*Visual	NORML	NORML	NORML	NORML
Odor	scalar	*Visual	NORML	NORML	NORML	NORML
Emulsified Water	scalar	*Visual	>0.01	NEG	NEG	NEG
Free Water	scalar	*Visual		NEG	NEG	NEG
FLUID PROPERT	IES	method	limit/base	current	history1	history2
Visc @ 40°C	cSt	ASTM D445	67	65.9	64.6	68.4
SAMPLE IMAGES	6	method	limit/base	current	history1	history2
Color				1907 - 44 - 4446 - 444 - 4446 - 444		
Bottom				()	(0)	

* - Denotes test methods that are outside of the ISO 17025 scope of accreditation. Statements of conformity to specifications are based on the simple acceptance decision rule (JCGM 106:2012)

F: (256)249-6197