

OIL ANALYSIS REPORT

Sample Number

Sample Rating Trend

Client Info

RP0039325

MELT SHOP - HYDRAULIC

MELT SHOP LADLE WALL SLIDE GATE HYDRAULIC UNIT (S/N 15-3000-0470)

Hydraulic System

FIRE-RESISTANT FLUID ISO 46 (66 GAL)

DIAGNOSIS

Recommendation

No corrective action is recommended at this time. Resample at the next service interval to monitor.

Wear

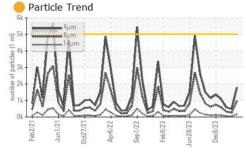
All component wear rates are normal.

Contamination

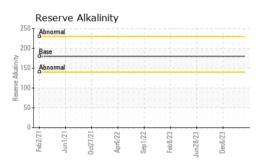
There is a moderate amount of particulates present in the oil.

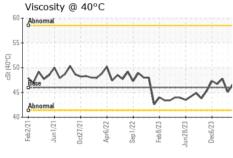
Fluid Condition

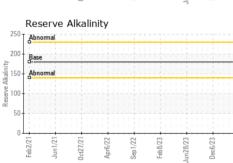
The pH level of this fluid is within the acceptable limits at 9.0. The condition of the oil is acceptable for the time in service.


RP0042696

RP0042615

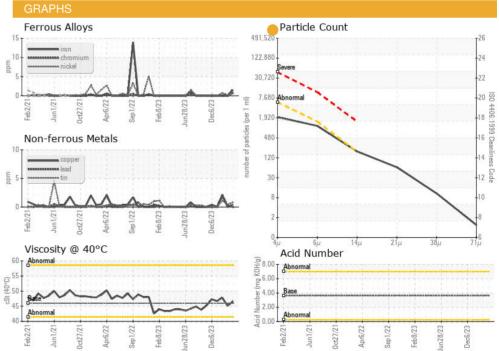

Sample Number		Olletti IIIIO		111 00-12000	111 0042010	111 0000020
Sample Date		Client Info		28 Mar 2024	05 Mar 2024	31 Jan 2024
Machine Age	hrs	Client Info		0	0	0
Oil Age	hrs	Client Info		0	0	0
Oil Changed		Client Info		N/A	N/A	N/A
Sample Status				ATTENTION	NORMAL	NORMAL
WEAR METALS		method	limit/base	current	history1	history2
Iron	ppm	ASTM D5185m	>20	2	0	0
Chromium	ppm	ASTM D5185m	>20	<1	0	0
Nickel	ppm	ASTM D5185m	>20	<1	<1	<1
Titanium	ppm	ASTM D5185m		<1	0	0
Silver	ppm	ASTM D5185m		0	0	<1
Aluminum	ppm	ASTM D5185m	>20	7	<1	<1
Lead	ppm	ASTM D5185m	>20	0	<1	2
Copper	ppm	ASTM D5185m	>20	<1	0	2
Tin	ppm	ASTM D5185m	>20	<1	<1	1
Vanadium	ppm	ASTM D5185m	-	<1	0	0
Cadmium	ppm	ASTM D5185m		<1	<1	<1
ADDITIVES	•••	method	limit/base		history1	history2
Boron	ppm	ASTM D5185m	5	0	0	0
Barium	ppm	ASTM D5185m	5	0	0	0
Molybdenum	ppm	ASTM D5185m	5	<1	0	<1
Manganese	ppm	ASTM D5185m		<1	<1	2
Magnesium	ppm	ASTM D5185m	5	2	2	1
Calcium	ppm	ASTM D5185m	50	7	1	1
Phosphorus	ppm	ASTM D5185m	175	4	4	4
Zinc	ppm	ASTM D5185m	62	<1	<1	3
CONTAMINANTS		method	limit/base	current	history1	history2
Silicon	ppm	ASTM D5185m	>15	2	0	<1
Sodium	ppm	ASTM D5185m		14	0	2
Potassium	ppm	ASTM D5185m	>20	3	<1	3
Water	%	ASTM D6304	>55	38.0	43.5	35.3
ppm Water	ppm	ASTM D6304	>55000	380000	435000	353000
FLUID CLEANLIN	IESS	method	limit/base	current	history1	history2
Particles >4µm		ASTM D7647	>5000	1775	479	583
Particles >6µm		ASTM D7647	>1300	967	261	317
Particles >14μm		ASTM D7647	>160	165	44	54
Particles >21µm		ASTM D7647	>40	55	15	18
Particles >38µm		ASTM D7647	>10	9	2	3
Particles >71µm		ASTM D7647	>3	1	0	0
Oil Cleanliness		ISO 4406 (c)	>19/17/14	18/17/15	16/15/13	16/15/13
		, ,		-		




OIL ANALYSIS REPORT

	ter (K	F)						
500000								
\sim	1/	2	1	Λ.	~	~		Λ.
400000 Ager (ppm) 300000 4 200000 4 200000 4 200000 4 200000 4 200000 4 200000 4 200000 4 200000 4 200000 4 200000 4 200000 4 200000 4 200000 4 200000 4 200000 4 200000 4 200000 4 200000 4 20000000 4 2000000 4 2000000 4 2000000 4 2000000 4 2000000 4 2000000 4 2000000 4 2000000 4 2000000 4 2000000 4 2000000 4 2000000 4 2000000 4 2000000 4 2000000 4 2000000 4 2000000 4 2000000 4 20000000 4 2000000 4 2000000 4 2000000 4 2000000 4 2000000 4 2000000 4 20000000 4 2000000 4 2000000 4 20000000 4 2000000 4 2000000 4 20000000 4 200000000	\mathbf{I}		\				v	
≥ 200000			ш			ш		
	ormal							
Seve	re		11111	11111	11111	11111	11,11	
Feb2/21	Jun1/21)ct27/21	Apr6/22	1/22	Feb8/23	Jun28/23	Dec6/23	
Ē	Π	Oct	Apı	Sep1/	-ge	Jun2	Dec	

VISUAL						
White Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Yellow Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Precipitate	scalar	*Visual	NONE	NONE	NONE	NONE
Silt	scalar	*Visual	NONE	NONE	NONE	NONE
Debris	scalar	*Visual	NONE	NONE	NONE	NONE
Sand/Dirt	scalar	*Visual	NONE	NONE	NONE	NONE
Appearance	scalar	*Visual	NORML	NORML	NORML	NORML
Odor	scalar	*Visual	NORML	NORML	NORML	NORML
Emulsified Water	scalar	*Visual	>55	0.2%	0.2%	0.2%
Free Water	scalar	*Visual		NEG	NEG	NEG
FLUID DDODED	TIFO	and a the seal	Page 21 /leasure		Internation of	la la La ma O


FLUID PROPERT	IES					history2
рН	Scale 0-14	ASTM D1287		9.00	10.0	10.0
Visc @ 40°C	cSt	ASTM D445	46	46.6	45.1	47.8

|--|

Color

Laboratory Sample No. Lab Number : 06134119 Unique Number: 10953584

: RP0042696

: WearCheck USA - 501 Madison Ave., Cary, NC 27513 Received **Tested**

Diagnosed

: 03 Apr 2024 : 03 Apr 2024 - Jonathan Hester

: 29 Mar 2024

Test Package: IND 2 (Additional Tests: pH, ReserveAlk) To discuss this sample report, contact Customer Service at 1-800-237-1369.

* - Denotes test methods that are outside of the ISO 17025 scope of accreditation.

Statements of conformity to specifications are based on the simple acceptance decision rule (JCGM 106:2012)

OUTOKUMPU STAINLESS USA

HWY 43 N CALVERT, AL US 36513

Contact: MARIO JOHNSON Mario.johnson@outokumpu.com

Submitted By: DALE ROBINSON

T: (251)321-4105 F: x: