

OIL ANALYSIS REPORT

Sample Rating Trend

NORMAL

Machine Id

GEA PAR FRY HS-2

Component Refrigeration Compressor

USPI ALT-68 SC (--- GAL)

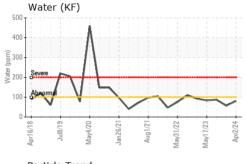
Recommendation

Resample at the next service interval to monitor.

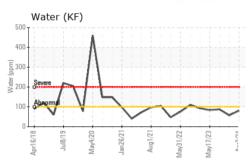
All component wear rates are normal.

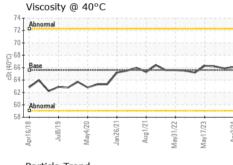
Contamination

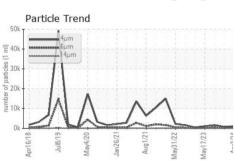
There is no indication of any contamination in the component. The amount and size of particulates present in the system is acceptable.


Fluid Condition

The AN level is acceptable for this fluid. The condition of the oil is suitable for further service.

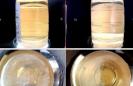

		pr2018 Juli	2019 May2020 Jan202	1 Aug 2021 May 2022 May 20	123 Apr202	
SAMPLE INFORM	MATION	method	limit/base	current	history1	history2
Sample Number		Client Info		USP0008042	USP0004224	USP0000248
Sample Date		Client Info		02 Apr 2024	05 Dec 2023	30 Aug 2023
Machine Age	hrs	Client Info		0	0	0
Oil Age	hrs	Client Info		0	0	0
Oil Changed		Client Info		N/A	N/A	N/A
Sample Status				NORMAL	NORMAL	NORMAL
WEAR METALS		method	limit/base	current	history1	history2
Iron	ppm	ASTM D5185m	>8	<1	0	0
Chromium	ppm	ASTM D5185m	>2	<1	0	0
Nickel	ppm	ASTM D5185m		<1	<1	0
Titanium	ppm	ASTM D5185m		<1	0	0
Silver	ppm	ASTM D5185m	>2	0	0	0
Aluminum	ppm	ASTM D5185m	>3	0	0	<1
Lead	ppm	ASTM D5185m	>2	0	0	0
Copper	ppm	ASTM D5185m	>8	<1	0	0
Tin	ppm	ASTM D5185m	>4	<1	0	0
Vanadium	ppm	ASTM D5185m		<1	0	<1
Cadmium	ppm	ASTM D5185m		<1	0	0
ADDITIVES		method	limit/base	current	history1	history2
Boron	ppm	ASTM D5185m		0	0	0
Barium	ppm	ASTM D5185m		0	0	0
Molybdenum	ppm	ASTM D5185m		<1	0	0
Manganese	ppm	ASTM D5185m		<1	0	0
Magnesium	ppm	ASTM D5185m		<1	<1	0
Calcium	ppm	ASTM D5185m		0	0	0
Phosphorus	ppm	ASTM D5185m		0	1	0
Zinc	ppm	ASTM D5185m		0	0	0
Sulfur	ppm	ASTM D5185m	50	0	0	0
CONTAMINANTS		method	limit/base	current	history1	history2
Silicon	ppm	ASTM D5185m	>15	2	<1	<1
Sodium	ppm	ASTM D5185m		<1	0	0
Potassium	ppm	ASTM D5185m	>20	<1	2	0
Water	%	ASTM D6304	>0.01	0.008	0.005	0.008
ppm Water	ppm	ASTM D6304	>100	81	57	87.7
FLUID CLEANLIN	ESS	method	limit/base	current	history1	history2
Particles >4μm		ASTM D7647		1131	622	1627
Particles >6µm		ASTM D7647	>2500	283	162	345
Particles >14μm		ASTM D7647	>320	16	6	11
Particles >21µm		ASTM D7647	>80	3	1	2
Particles >38µm		ASTM D7647	>20	0	0	0
Particles >71μm		ASTM D7647		0	0	0
Oil Cleanliness		ISO 4406 (c)	>/18/15	17/15/11	16/15/10	18/16/11
FLUID DEGRADA	TION	method	limit/base	current	history1	history2
Acid Number (AN)	mg KOH/g	ASTM D974	0.005	0.015	0.014	0.014




OIL ANALYSIS REPORT

Part 50k _T	ticle Tr	end					
	4µп 6µп 14µ						
# 40k - 10 20k - 20k - 10k - 1	1						
que 10k	八		ر	<u>\</u>	1		
Apr16/18	Jul8/19	May4/20	Jan26/21.	Aug1/21.	May31/22	May17/23	Apr2/24

VISUAL		method	limit/base	current	history1	history2
White Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Yellow Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Precipitate	scalar	*Visual	NONE	NONE	NONE	NONE
Silt	scalar	*Visual	NONE	NONE	NONE	NONE
Debris	scalar	*Visual	NONE	NONE	NONE	NONE
Sand/Dirt	scalar	*Visual	NONE	NONE	NONE	NONE
Appearance	scalar	*Visual	NORML	NORML	NORML	NORML
Odor	scalar	*Visual	NORML	NORML	NORML	NORML
Emulsified Water	scalar	*Visual	>0.01	NEG	NEG	NEG
Free Water	scalar	*Visual		NEG	NEG	NEG


FLUID PROPER	TIES	method				history2
Visc @ 40°C	cSt	ASTM D445	65.6	66.1	65.9	66.2

SAMPL	E IMAGES

Color

Bottom

Ferrous Alloys Particle Count 491 520 122,880 30,720 7,680 1,920 Non-ferrous Metals 480 120 Viscosity @ 40°C Acid Number 20.02 20.0 (mg KOH/g) 10.0 0 0.01 0.00 G May17/23.

Certificate 12367

Laboratory Sample No.

Test Package : IND 2

: USP0008042 Lab Number : 06138088 Unique Number : 10962896

: WearCheck USA - 501 Madison Ave., Cary, NC 27513 Received : 03 Apr 2024

Tested : 04 Apr 2024 Diagnosed : 05 Apr 2024 - Doug Bogart

GREEN FOREST, AR

TYSON FOODS-GREEN FOREST-USP

Contact: SERVICE MANAGER

To discuss this sample report, contact Customer Service at 1-800-237-1369.

* - Denotes test methods that are outside of the ISO 17025 scope of accreditation.

Statements of conformity to specifications are based on the simple acceptance decision rule (JCGM 106:2012)

US

T:

F: