

OIL ANALYSIS REPORT

NOT GIVEN **INGERSOLL RAND M80-1985 - 2**

Component

DIAGNOSIS

Recommendation

Resample at the next service interval to monitor. Please specify the brand, type, and viscosity of the oil on your next sample.

All component wear rates are normal.

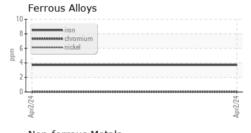
Contamination

There is no indication of any contamination in the oil.

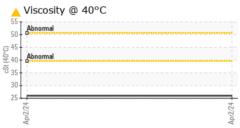
Fluid Condition

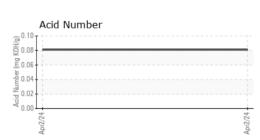
Viscosity of sample indicates oil is within ISO 22 range, advise investigate. Confirm oil type. The AN level is acceptable for this fluid.

SAMPLE INFORM	IPLE INFORMATION m		limit/base	current	history1	history2			
Sample Number		Client Info		UCH06141431					
Sample Date		Client Info		02 Apr 2024					
Machine Age	hrs	Client Info		0					
Oil Age	hrs	Client Info		0					
Oil Changed		Client Info		N/A					
Sample Status				MARGINAL					
CONTAMINATION		method limit/base		current	history1	history2			
Water		WC Method	>0.1	NEG					
WEAR METALS		method	limit/base	current	history1	history2			
Iron	ppm	ASTM D5185m	>50	4					
Chromium	ppm	ASTM D5185m	>10	0					
Nickel	ppm	ASTM D5185m		0					
Titanium	ppm	ASTM D5185m		0					
Silver	ppm	ASTM D5185m		0					
Aluminum	ppm	ASTM D5185m	>25	0					
Lead	ppm	ASTM D5185m	>25	0					
Copper	ppm	ASTM D5185m	>50	<1					
Tin	ppm	ASTM D5185m	>15	<1					
Vanadium	ppm	ASTM D5185m		0					
Cadmium	ppm	ASTM D5185m		0					
ADDITIVES		method	limit/base	current	history1	history2			
Boron	ppm	ASTM D5185m		0					
Barium	ppm	ASTM D5185m		424					
Molybdenum	ppm	ASTM D5185m		0					
Manganese	ppm	ASTM D5185m		0					
Magnesium	ppm	ASTM D5185m		0					
Calcium	ppm	ASTM D5185m		0					
Phosphorus	ppm	ASTM D5185m		0					
Zinc	ppm	ASTM D5185m		0					
Sulfur	ppm	ASTM D5185m		249					
CONTAMINANTS		method	limit/base	current	history1	history2			
Silicon	ppm	ASTM D5185m	>25	0					
Sodium	ppm	ASTM D5185m		2					
Potassium	ppm	ASTM D5185m	>20	0					
FLUID DEGRADA	TION	method	limit/base	current	history1	history2			
Acid Number (AN)	mg KOH/g	ASTM D8045		0.081					



OIL ANALYSIS REPORT





GRAPHS

ı-ferro	ous	Ме																		
cor	per																			
nanana tin																				
				_		_	_	_		_	_		_	_	_	_	_	_	_	
•••••			*****									-	-		-		•••			Apr2/24
		copper lead		copper i	copper	copper lead	copper copper tin	copper lead	copper copper line tin	copper lead	copper copper line	copper	copper lead	copper	copper lead	copper				

Certificate 12367

Laboratory Sample No.

: WearCheck USA - 501 Madison Ave., Cary, NC 27513 Lab Number : 06141431

Test Package : IND 2

: UCH06141431 Unique Number : 10966239

Received : 08 Apr 2024 **Tested** Diagnosed

: 09 Apr 2024 : 10 Apr 2024 - Angela Borella

JOHN HENRY FOSTER COMPANY

4700 LEBOURGET STREET SAINT LOUIS, MO US 63134

Contact: RACHEL VON HATTEN rvonhatten@jhf.com

T: (314)593-1267 F: (314)874-0965

To discuss this sample report, contact Customer Service at 1-800-237-1369.

* - Denotes test methods that are outside of the ISO 17025 scope of accreditation. Statements of conformity to specifications are based on the simple acceptance decision rule (JCGM 106:2012)