

OIL ANALYSIS REPORT

Sample Rating Trend

NORMAL

Machine Id

INGERSOLL RAND PRO 1 I/R (S/N HE2548U09316)

Compressor

USPI FG AIR 46 (--- GAL)

וט	$^{\prime}$	чι	\sim	U	${}^{\circ}$

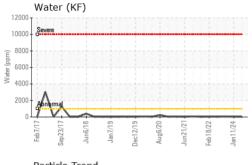
Recommendation

Resample at the next service interval to monitor.

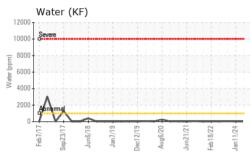
All component wear rates are normal.

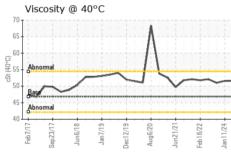
Contamination

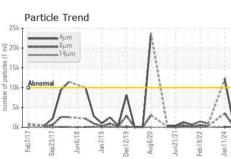
There is no indication of any contamination in the component. The amount and size of particulates present in the system is acceptable.


Fluid Condition

The AN level is acceptable for this fluid. The condition of the oil is suitable for further service.


6:2017 Sep2017 Jun2018 Jan2019 On:2019 Aug2020 Jun2021 Feb2022 Jan2024											
SAMPLE INFORM	MATION	method	limit/base	current	history1	history2					
Sample Number		Client Info		USPM36661	USPM30043	USPM26027					
Sample Date		Client Info		22 Feb 2024	11 Jan 2024	13 Apr 2023					
Machine Age	hrs	Client Info		101115	100456	0					
Oil Age	hrs	Client Info		0	0	0					
Oil Changed	Oil Changed			N/A	N/A	N/A					
Sample Status				NORMAL	ATTENTION	ABNORMAL					
WEAR METALS		method	limit/base	current	history1	history2					
Iron	ppm	ASTM D5185m	>50	0	0	0					
Chromium	ppm	ASTM D5185m	>10	<1	0	0					
Nickel	ppm	ASTM D5185m		0	0	0					
Titanium	ppm	ASTM D5185m		0	0	0					
Silver	ppm	ASTM D5185m		0	0	0					
Aluminum	ppm	ASTM D5185m	>25	0	0	<1					
Lead	ppm	ASTM D5185m	>25	0	<1	0					
Copper	ppm	ASTM D5185m	>50	0	<1	0					
Tin	ppm	ASTM D5185m	>15	0	0	0					
Vanadium	ppm	ASTM D5185m		0	0	0					
Cadmium	ppm	ASTM D5185m		0	0	0					
ADDITIVES		method	limit/base	current	history1	history2					
Boron	ppm	ASTM D5185m	0	0	0	0					
Barium	ppm	ASTM D5185m	0	0	0	0					
Molybdenum	ppm	ASTM D5185m	0	0	0	0					
Manganese	ppm	ASTM D5185m		0	<1	<1					
Magnesium	ppm	ASTM D5185m	0	0	<1	<1					
Calcium	ppm	ASTM D5185m	0	0	1	0					
Phosphorus	ppm	ASTM D5185m	0	0	0	2					
Zinc	ppm	ASTM D5185m	0	0	0	0					
Sulfur	ppm	ASTM D5185m	0	16	0	0					
CONTAMINANTS		method	limit/base	current	history1	history2					
Silicon	ppm	ASTM D5185m	>25	7	7	0					
Sodium	ppm	ASTM D5185m		<1	<1	0					
Potassium	ppm	ASTM D5185m	>20	0	<1	0					
Water	%	ASTM D6304	>0.1	0.001	0.002	0.005					
ppm Water	ppm	ASTM D6304	>1000	15	18	52.8					
FLUID CLEANLIN	ESS	method	limit/base	current	history1	history2					
Particles >4μm		ASTM D7647	>10000	1900	12128						
Particles >6µm		ASTM D7647	>2500	484	3519						
Particles >14μm		ASTM D7647	>320	46	226						
Particles >21µm		ASTM D7647	>80	14	40						
Particles >38µm		ASTM D7647	>20	0	1						
Particles >71µm		ASTM D7647	>4	0	0						
Oil Cleanliness		ISO 4406 (c)	>20/18/15	18/16/13	21/19/15						
FLUID DEGRADA	TION	method	limit/base	current	history1	history2					
Acid Number (AN)	mg KOH/g	ASTM D8045	0.15	0.092	0.192	0.49					




OIL ANALYSIS REPORT

= 20k - ■	4,	um um			1			
20k + 15k + 10k +		ŧμm			1			
10k - At	normal	-						A
5k	/	1		٨				/1
	/		1	M	1			1
Ok JIL			200	Mary and	-	C. Street Billion	CHIEF ARTES	

VISUAL		method	limit/base	current	history1	history2
White Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Yellow Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Precipitate	scalar	*Visual	NONE	NONE	NONE	NONE
Silt	scalar	*Visual	NONE	NONE	NONE	NONE
Debris	scalar	*Visual	NONE	NONE	LIGHT	▲ MODER
Sand/Dirt	scalar	*Visual	NONE	NONE	NONE	NONE
Appearance	scalar	*Visual	NORML	NORML	NORML	NORML
Odor	scalar	*Visual	NORML	NORML	NORML	NORML
Emulsified Water	scalar	*Visual	>0.1	NEG	NEG	NEG
Free Water	scalar	*Visual		NEG	NEG	NEG
FLUID PROPERT	method	limit/base	current	history1	history2	

Visc @ 40°C	cSt	ASTM D445	46.8	51.6	51.6	51.0
SAMPLE IMAGI	ES	method				history2

Color

	GR.	APH	S															
	Feri	ous	Alloy	S						Р	article	Coun	t					
10										491,520								T ²⁶
6 udd		eeeeeee Cl	on hromium ickel							122,880 Se	vere							+24
2										30,720-	175							-22
0		<u> </u>	- 81	- 61	6		- 12	22	24	7.680 I	normal	1						-20 IS
	Feb7/17	Sep23/1	Jun6/18	Jan7/19	Dec12/19	Aug6/20	Jun21/21	Feb18/22	Jan11/24	1,920			`					18 199
	Non	-ferr	ous I	Metal	s					岩 480-		1						16 Ce
10- 8-	_	CI	opper			A	٨			1,920 480 120 120 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1						180 4406:1999 Cleanliness Code
Edd 4	*****	assassa tj	n				/\			30-				\				-12 g
2	V	_					1			. 8-					1			-10
	Feb7/17	Sep23/17	Jun6/18	Jan7/19	Dec12/19	Aug6/20	Jun21/21	Feb 18/22	Jan 11/24	2-					`	/		-8
	Visc	osity	@ 4	0°C						04,4	cid Nu	μ 	14μ	2	1μ	38μ		71μ
70										₽1.50 _T -	icia ivu	mber						
						Λ				KOH					٨			
(3°C)+(3°C)	Abno	rmal				11				£ 1.00+					1			
₹ 50	Base	~				7	~			Acid Number (mg KOH/g) 00.00 00.00				۸	11		144	^
40	Abno	rmal						100		2 2	Base			_	11			7
,0	Feb7/17	Sep23/17	Jun6/18 -	Jan7/19	Dec12/19 -	Aug6/20	Jun21/21-	Feb18/22 -	1/24	A Feb7/17	Sep23/17	Jun6/18 -	Jan7/19	Dec12/19 -	Aug6/20	1/21	8/22	1/24
	Rep	Sep2	Jun	Jan	Decl	Aug	Jun2	Feb1	Jan11/24	-6	Sep2	Jun	Jan	Dec1,	Aug	Jun21/21	Feb 18/22	Jan11/24

Certificate 12367

Laboratory Sample No.

Lab Number : 06143733

: USPM36661 Unique Number : 10968541 Test Package : IND 2

: WearCheck USA - 501 Madison Ave., Cary, NC 27513 Received : 09 Apr 2024 **Tested** : 10 Apr 2024

Diagnosed : 11 Apr 2024 - Doug Bogart **TYSON - PASCO WALLULA -USP**

DODD RD WALLULA, WA US 99363

T: (402)423-6375

F: (402)423-6661

Contact: RICK DUVALL

To discuss this sample report, contact Customer Service at 1-800-237-1369.

* - Denotes test methods that are outside of the ISO 17025 scope of accreditation.

Statements of conformity to specifications are based on the simple acceptance decision rule (JCGM 106:2012)