

FUEL REPORT

Sample Rating Trend

ISO

Machine Id

SHOP GEN - PIEDMONT ELECTRIC

Diesel Fuel

Fluid No.2 DIESEL FUEL (ULTRALOW SULPHUR) (--- QTS)

DIAGNOSIS

Recommendation

Laboratory test indicate that this fuel is suitable for use and meets all test requirements.

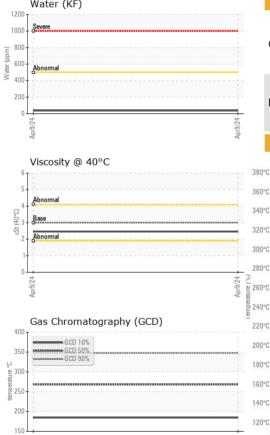
Corrosion

All metal levels are normal indicating no corrosion in the cooling system.

Contaminants

There is a moderate amount of particulates present in the fuel.

Fuel Condition


All laboratory tests indicate that this sample meets specifications for No.2 diesel fuel, low sulfur (US EPA/CGSB-3.517-3 type B).

SAMPLE INFORM	IATION	method	limit/base	current	history1	history2
Sample Number		Client Info		WC06145515		
Sample Date		Client Info		09 Apr 2024		
Machine Age	hrs	Client Info		0		
Sample Status				ATTENTION		
PHYSICAL PROP	ERTIES	method	limit/base	current	history1	history2
Fuel Color	text	*Visual Screen	Yllow	Red		
ASTM Color	scalar	*ASTM D1500		L4.5		
Visc @ 40°C	cSt	ASTM D445	3.0	2.46		
Pensky-Martens Flash Point	°C	*PMCC Calculated	52	63		
SULFUR CONTER	NT	method	limit/base	current	history1	history2
Sulfur	ppm	ASTM D5185m	10	0		
Sulfur (UVF)	ppm	ASTM D5453		10		
DISTILLATION		method	limit/base	current	history1	history2
Initial Boiling Point	°C	ASTM D86	165	174		
5% Distillation Point	°C	ASTM D86		197		
10% Distill Point	°C	ASTM D86	201	206		
15% Distillation Point	°C	ASTM D86		215		
20% Distill Point	°C	ASTM D86	216	223		
30% Distill Point	°C	ASTM D86	230	238		
40% Distill Point	°C	ASTM D86	243	251		
50% Distill Point	°C	ASTM D86	255	265		
60% Distill Point	°C	ASTM D86	267	277		
70% Distill Point	°C	ASTM D86	280	290		
80% Distill Point	°C	ASTM D86	295	305		
85% Distillation Point	°C	ASTM D86		316		
90% Distill Point	°C	ASTM D86	310	326		
95% Distillation Point	°C	ASTM D86		343		
Final Boiling Point	°C	ASTM D86	341	357		
IGNITION QUALIT	ΓY	method	limit/base	current	history1	history2
API Gravity		ASTM D7777	37.7	36		
Cetane Index		ASTM D4737	<40.0	49		
CONTAMINANTS		method	limit/base	current	history1	history2
Silicon	ppm	ASTM D5185m	<1.0	<1		
Sodium	ppm	ASTM D5185m	<0.1	1		
Potassium	ppm	ASTM D5185m	<0.1	0		
Water	%	ASTM D6304	< 0.05	0.003		
ppm Water	ppm	ASTM D6304	<500	37		
% Gasoline	%	*In-House	<0.50	0.0		
% Biodiesel	%	*In-House	<20.0	0.0		

FUEL REPORT

1,520 T	icle Cou				T ²⁶
2,880 -					-24
30,720 Severe					-22
7,680 Abnom					-20
1,920		Sec. 1.			-22 -20 -18 -16 -14 -12 -10
480-					-16
120-		1			-14
30-			-		-12
8-					10
"T					TIU
2-					-8
$\frac{2}{4\mu}$	6μ ticle Trer	14µ	21µ	38µ	
2- 0. 4μ Part	icle Trer		21µ	38µ	-8
2 0 4 0 1 1 1 1 1 1 1 1 1 1 1 1 1	ticle Trer		21/µ	38µ	
2 0 4 0 4 2 2 4 2 2 2 2 2 4 2 2 4 2 4 2 4 2 4 4 4 4 4 4 4 4 4 4 4 4 4	ticle Trer		21µ	38µ	-8

Particles >4µm			limit/base	e current	history1	history2
		ASTM D7647	>2500	e 2864		
Particles >6µm		ASTM D7647	>640	593		
Particles >14µm		ASTM D7647	>80	46		
Particles >21µm		ASTM D7647	>20	12		
Particles >38µm		ASTM D7647	>4	1		
Particles >71µm		ASTM D7647	>3	0		
Dil Cleanliness		ISO 4406 (c)	>18/16/13	19/16/13		
HEAVY METALS		method	limit/base	e current	history1	history2
Aluminum	ppm	ASTM D5185m	<0.1	0		
lickel	ppm	ASTM D5185m	<0.1	0		
ead	ppm	ASTM D5185m	<0.1	0		
/anadium	ppm	ASTM D5185m	<0.1	<1		
ron	ppm	ASTM D5185m	<0.1	0		
Calcium	ppm	ASTM D5185m	<0.1	0		
/lagnesium	ppm	ASTM D5185m	<0.1	0		
Phosphorus	ppm	ASTM D5185m	<0.1	<1		
Zinc	ppm	ASTM D5185m	<0.1	0		
SAMPLE IMAGES	;	method	limit/base	e current	history1	history2
Color Bottom					no image no image	no image no image
GRAPHS Fuel Distillation Cur	rve			Pensky-Marter	ns Flash Point (°C)
			. /.	60 Base		
				50		24
		/		Apr9/24		2 C Prov
		1.00		GCD Spectrum	ı	
	1					
				550 - 500 - 450 - 400 -		
				350		
				100- 50-	N. H. H. H.	
		70% - 80% -	- %00i		11 12 12 12 12 12 12 12 12 12 12 12 12 1	21 23 25 26 28 28
0% 10%+ 30%+ 40%+	cent Recovere		10			

Lab Number : 06145515 Tested : 26 Apr 2024 DURHAM, NC : 26 Apr 2024 - Angela Borella US 27705 Unique Number : 10970323 Diagnosed Test Package : DF-2 (Additional Tests: Fuel, Screen) Contact: JESSE BROWN Certificate 12367 To discuss this sample report, contact Customer Service at 1-800-237-1369. jesse@couchoilcompany.com * - Denotes test methods that are outside of the ISO 17025 scope of accreditation. T: (919)285-5408 Statements of conformity to specifications are based on the simple acceptance decision rule (JCGM 106:2012)

Report Id: COUDUR [WUSCAR] 06145515 (Generated: 04/26/2024 17:36:05) Rev: 1

kpr9/24

Laboratory

Sample No.

Contact/Location: JESSE BROWN - COUDUR

F: