

OIL ANALYSIS REPORT

Sample Rating Trend

NORMAL

RECYCLED NH3

Refrigeration Compressor

USPI ALT-68 SC (--- GAL)

DIAGNOSIS

Recommendation

This is a baseline read-out on the submitted sample. DRUM ${\bf 4}$

Contamination

There is no indication of any contamination in the oil. The amount and size of particulates present in the system are acceptable.

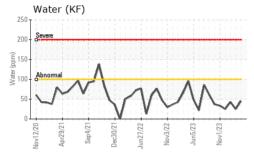
Fluid Condition

The AN level is acceptable for this fluid. The condition of the oil is suitable for further service. Viscosity confirmed.

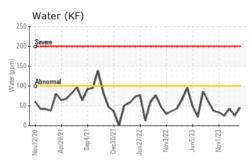
v2020 Apr2021 Smp3021 Om2021 Jun2022 Nov4022 Jun2023 Nov2023						
SAMPLE INFORM	MATION	method	limit/base	current	history1	history2
Sample Number		Client Info		USP239466	USP0006083	USP201483
Sample Date		Client Info		04 Apr 2024	14 Mar 2024	22 Feb 2024
Machine Age	mths	Client Info		0	0	0
Oil Age	mths	Client Info		0	0	0
Oil Changed		Client Info		N/A	N/A	N/A
Sample Status				NORMAL	NORMAL	NORMAL
WEAR METALS		method	limit/base	current	history1	history2
Iron	ppm	ASTM D5185m	>8	0	0	0
Chromium	ppm	ASTM D5185m	>2	0	0	0
Nickel	ppm	ASTM D5185m		0	0	0
Titanium	ppm	ASTM D5185m		0	0	0
Silver	ppm	ASTM D5185m	>2	0	0	0
Aluminum	ppm	ASTM D5185m	>3	0	0	0
Lead	ppm	ASTM D5185m	>2	0	0	0
Copper	ppm	ASTM D5185m	>8	0	0	0
Tin	ppm	ASTM D5185m	>4	0	0	<1
Vanadium	ppm	ASTM D5185m		0	0	<1
Cadmium	ppm	ASTM D5185m		0	0	0
ADDITIVES		method	limit/base	current	history1	history2
Boron	ppm	ASTM D5185m		0	0	0
Barium	ppm	ASTM D5185m		0	0	0
Molybdenum	ppm	ASTM D5185m		0	0	0
Manganese	ppm	ASTM D5185m		0	0	0
Magnesium	ppm	ASTM D5185m		0	0	<1
Calcium	ppm	ASTM D5185m		0	0	0
Phosphorus	ppm	ASTM D5185m		0	<1	1
Zinc	ppm	ASTM D5185m		0	0	0
Sulfur	ppm	ASTM D5185m	50	10	0	30
CONTAMINANTS		method	limit/base	current	history1	history2
Silicon	ppm	ASTM D5185m	>15	3	3	4
Sodium	ppm	ASTM D5185m		0	0	0
Potassium	ppm	ASTM D5185m	>20	0	0	0
Water	%	ASTM D6304	>0.01	0.004	0.002	0.004
ppm Water	ppm	ASTM D6304	>100	45	25	43
FLUID CLEANLIN	IESS	method	limit/base	current	history1	history2
Particles >4µm		ASTM D7647		375	440	65
Particles >6µm		ASTM D7647	>2500	48	68	16
Particles >14μm		ASTM D7647	>320	8	8	3
Particles >21μm		ASTM D7647	>80	3	2	2
Particles >38μm		ASTM D7647	>20	0	1	0
Particles >71μm		ASTM D7647	>4	0	0	0
Oil Cleanliness		ISO 4406 (c)	>/18/15	16/13/10	16/13/10	13/11/9
FLUID DEGRADA	TION	method	limit/base	current	history1	history2
A siel Nivesels sur (ANI)	I/OII/-	ACTAL DOZA	0.005	0.014	0.014	0.014

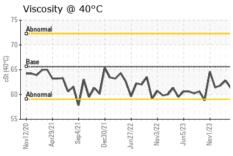
mg KOH/g ASTM D974 0.005

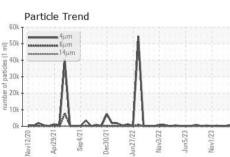
Acid Number (AN)


0.014

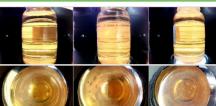
0.014

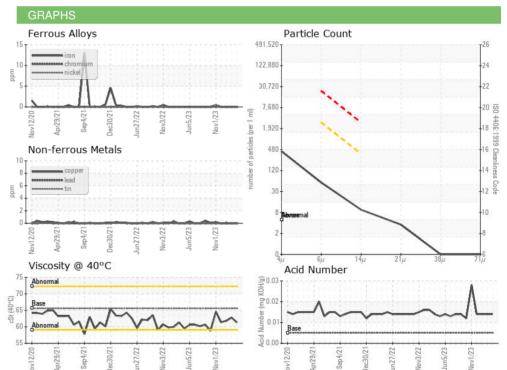

0.014




OIL ANALYSIS REPORT

Par 60k T	ticle T	rend					
≘50k-	навана 6 _{ј.} г	m m um		1			
10k -	A			1			
20k - 10k -				1			
0k	Apr29/21	Sep4/21	Jec30/21	22/12	Nov3/22	un5/23	Nov1/23
Nov12/	Apr	S	Dec	Junz	N	- F	2




FLUID PROPER	THES	method			riistory i	HISTORYZ
Visc @ 40°C	cSt	ASTM D445	65.6	61.3	62.8	61.8

SAMPLE IMAGES	method	

Color

Bottom

Certificate 12367

Laboratory Sample No.

Lab Number : 06145935

Test Package : IND 2

: USP239466 Unique Number : 10976013

: WearCheck USA - 501 Madison Ave., Cary, NC 27513 Received : 11 Apr 2024

Tested : 12 Apr 2024 Diagnosed : 12 Apr 2024 - Doug Bogart TYSON-BLOUNTSVILE-USP

BLOUNTSVILLE, AL LIS

Contact: SERVICE MANAGER

To discuss this sample report, contact Customer Service at 1-800-237-1369.

 st - Denotes test methods that are outside of the ISO 17025 scope of accreditation.

Statements of conformity to specifications are based on the simple acceptance decision rule (JCGM 106:2012)

T:

F: