

OIL ANALYSIS REPORT

Machine Id

MACHINE 12 (S/N N01A0100073)

Hydraulic System

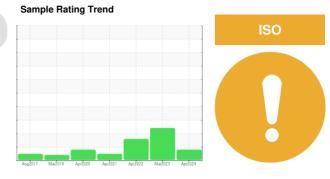
SAFETY-KLEEN PERFORMANCE PLUS HYDRAULIC AW 46 (100 GAL)

DIAGNOSIS

Recommendation

No corrective action is recommended at this time. Oil and filter change at the time of sampling has been noted. Resample at the next service interval to monitor.

Wear


All component wear rates are normal.

Contamination

There is a moderate amount of silt (particulates < 14 microns in size) present in the oil.

Fluid Condition

The AN level is acceptable for this fluid. The condition of the oil is suitable for further service.

SAMPLE INFORM	ATION	method	limit/base	current	history1	history2
Sample Number		Client Info		WC0910092	WC0800148	WC0668628
Sample Date		Client Info		01 Apr 2024	27 Mar 2023	07 Apr 2022
Machine Age	mths	Client Info		0	0	0
Oil Age	mths	Client Info		0	0	0
Oil Changed		Client Info		Changed	Changed	Filtered
Sample Status				ATTENTION	ABNORMAL	ABNORMAL
CONTAMINATION		method	limit/base	current	history1	history2
Water		WC Method	>0.05	NEG	NEG	NEG
WEAR METALS		method	limit/base	current	history1	history2
Iron	ppm	ASTM D5185m	>40	<1	<1	<1
Chromium	ppm	ASTM D5185m	>4	<1	0	0
Nickel	ppm	ASTM D5185m	>20	<1	0	0
Titanium	ppm	ASTM D5185m		<1	0	0
Silver	ppm	ASTM D5185m		0	0	0
Aluminum	ppm	ASTM D5185m	>4	1	0	<1
Lead	ppm	ASTM D5185m	>10	1	0	0
Copper	ppm	ASTM D5185m	>60	1	<1	<1
Tin	ppm	ASTM D5185m	>4	1	0	0
Antimony	ppm	ASTM D5185m				
Vanadium	ppm	ASTM D5185m		<1	0	0
Cadmium	ppm	ASTM D5185m		<1	0	0
ADDITIVES		method	limit/base	current	history1	history2
Boron	ppm	ASTM D5185m		0	0	1
Barium	ppm	ASTM D5185m		0	0	0
Molybdenum	ppm	ASTM D5185m		2	1	1
Manganese	ppm	ASTM D5185m		<1	<1	0
Magnesium	ppm	ASTM D5185m		11	18	8
Calcium	ppm	ASTM D5185m	48	69	66	61
Phosphorus	ppm	ASTM D5185m	340	364	356	313
Zinc	ppm	ASTM D5185m	430	439	449	431
Sulfur	ppm	ASTM D5185m		941	1082	728
CONTAMINANTS		method	limit/base	current	history1	history2
Silicon	ppm	ASTM D5185m	>20	0	<1	<1
	ppm	ASTM D5185m		0	<1	0
Potassium	ppm	ASTM D5185m	>20	<1	<1	2
FLUID CLEANLINE	ESS	method	limit/base	current	history1	history2
Particles >4µm		ASTM D7647	>5000	<mark> </mark> 5116	▲ 14890	1 2019
Particles >6µm		ASTM D7647	>1300	125	A 3179	2842
Particles >14µm		ASTM D7647	>160	10	468	<u> </u>
				•		

ASTM D7647 >40

ASTM D7647 >10

ASTM D7647 >3

3

0

0

ISO 4406 (c) >19/17/14 **20/14/10**

Particles >21µm

Particles >38µm

Particles >71µm

Oil Cleanliness

211

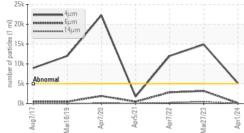
12

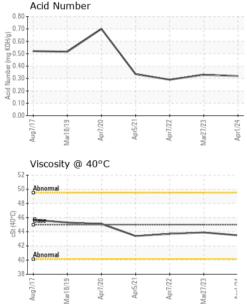
0

21/19/16

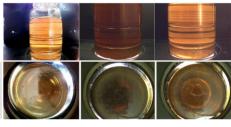
46

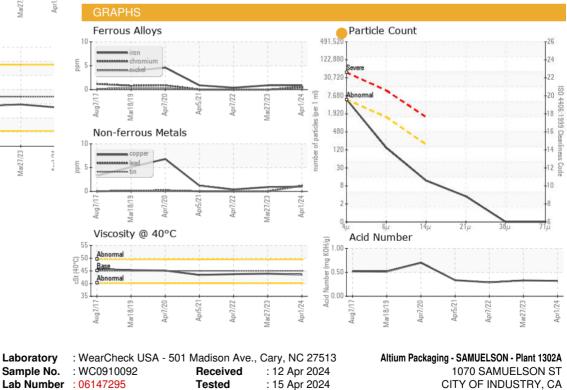
5


0


▲ 21/19/15

OIL ANALYSIS REPORT


25k	icle Tre 4μm	nd				
The second secon	mal			7		
	1111111	AND DESCRIPTION OF THE OWNER.	V	and the second		and the second
Aug7/17	Mar1 8/19	Apr7/20	Apr5/21	Apr7/22	Mar27/23	Apr1/24
e Part	icle Tre	nd				



FLUID DEGRADA	TION	method	limit/base	current	history1	history2
Acid Number (AN)	mg KOH/g	ASTM D8045		0.32	0.33	0.29
VISUAL		method	limit/base	current	history1	history2
White Metal	scalar	*Visual	NONE	LIGHT	NONE	NONE
Yellow Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Precipitate	scalar	*Visual	NONE	NONE	NONE	NONE
Silt	scalar	*Visual	NONE	NONE	NONE	NONE
Debris	scalar	*Visual	NONE	NONE	LIGHT	VLITE
Sand/Dirt	scalar	*Visual	NONE	NONE	NONE	NONE
Appearance	scalar	*Visual	NORML	NORML	NORML	NORML
Odor	scalar	*Visual	NORML	NORML	NORML	NORML
Emulsified Water	scalar	*Visual	>0.05	NEG	NEG	NEG
Free Water	scalar	*Visual		NEG	NEG	NEG
FLUID PROPERT	IES	method	limit/base	current	history1	history2
Visc @ 40°C	cSt	ASTM D445	45.0	43.5	43.9	43.7
SAMPLE IMAGES	3	method	limit/base	current	history1	history2

Color

Bottom

CITY OF INDUSTRY, CA US 91748-1219 Contact: ERIC LOYA Eric.Loya@altiumpkg.com T: F:

Unique Number : 10977373 Diagnosed : 16 Apr 2024 - Don Baldridge Test Package : IND 2 Certificate 12367 To discuss this sample report, contact Customer Service at 1-800-237-1369. * - Denotes test methods that are outside of the ISO 17025 scope of accreditation. Statements of conformity to specifications are based on the simple acceptance decision rule (JCGM 106:2012)

Report Id: CONSAM [WUSCAR] 06147295 (Generated: 04/16/2024 10:57:30) Rev: 1

Laboratory

Contact/Location: ERIC LOYA - CONSAM Page 2 of 2