

OIL ANALYSIS REPORT

Sample Rating Trend

Machine Id

TMC - P15 (S/N W102018)

Component **Hydraulic System**

Fluid

AW HYDRAULIC OIL ISO 68 (--- QTS)

DIAGNOSIS

Recommendation

No corrective action is recommended at this time. Resample at the next service interval to monitor.

Wear

All component wear rates are normal.

Contamination

There is no indication of any contamination in the oil. The amount and size of particulates present in the system are acceptable.

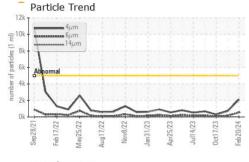
Fluid Condition

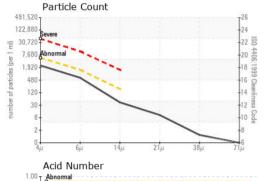
Viscosity of sample indicates oil is within ISO 46 range, advise investigate. Confirm oil type. The AN level is acceptable for this fluid.

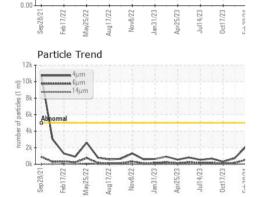
		ep2021 Feb202	2 May2022 Aug2022 Nov2	022 Jan2023 Apr2023 Jul2023 Oc	12023 Feb 202	
SAMPLE INFORM	MATION	method	limit/base	current	history1	history2
Sample Number		Client Info		PTK0005473	PTK0005087	PTK0005077
Sample Date		Client Info		20 Feb 2024	03 Jan 2024	17 Oct 2023
Machine Age	hrs	Client Info		0	0	0
Oil Age	hrs	Client Info		0	0	0
Oil Changed		Client Info		N/A	N/A	N/A
Sample Status				ATTENTION	ATTENTION	ATTENTION
CONTAMINATION	1	method	limit/base	current	history1	history2
Water		WC Method	>0.1	NEG	NEG	NEG
WEAR METALS		method	limit/base	current	history1	history2
Iron	ppm	ASTM D5185m	>20	2	<1	<1
Chromium	ppm	ASTM D5185m	>10	<1	0	0
Nickel	ppm	ASTM D5185m	>10	0	0	0
Titanium	ppm	ASTM D5185m		0	0	0
Silver	ppm	ASTM D5185m		0	0	0
Aluminum	ppm	ASTM D5185m	>10	<1	0	0
Lead	ppm	ASTM D5185m	>10	0	0	0
Copper	ppm	ASTM D5185m	>75	4	5	5
Tin	ppm	ASTM D5185m	>10	0	0	0
Vanadium	ppm	ASTM D5185m		0	0	0
Cadmium	ppm	ASTM D5185m		0	0	0
ADDITIVES		method	limit/base	current	history1	history2
Boron	ppm	ASTM D5185m	5	0	0	0
Barium	ppm	ASTM D5185m	5	0	0	0
Molybdenum	ppm	ASTM D5185m	5	0	0	0
Manganese	ppm	ASTM D5185m		0	0	0
Magnesium	ppm	ASTM D5185m	25	1	0	0
Calcium	ppm	ASTM D5185m	200	53	51	59
Phosphorus	ppm	ASTM D5185m	300	340	314	366
Zinc	ppm	ASTM D5185m	370	455	423	475
Sulfur	ppm	ASTM D5185m	2500	3196	2664	3064
CONTAMINANTS		method	limit/base	current	history1	history2
Silicon	ppm	ASTM D5185m	>20	<1	<1	<1
Sodium	ppm	ASTM D5185m		<1	<1	0
Potassium	ppm	ASTM D5185m	>20	<1	0	0
FLUID CLEANLIN	ESS	method	limit/base	current	history1	history2
Particles >4µm		ASTM D7647	>5000	2122	719	293
Particles >6µm		ASTM D7647	>1300	546	152	72
Particles >14μm		ASTM D7647	>160	36	17	5
Particles >21µm		ASTM D7647	>40	9	6	2
Particles >38µm		ASTM D7647	>10	1	0	0
Particles >71µm		ASTM D7647	>3	0	0	0
Oil Cleanliness		ISO 4406 (c)	>19/17/14	18/16/12	17/14/11	15/13/10
FLUID DEGRADA	TION	method	limit/base	current	history1	history2

Acid Number (AN)

mg KOH/g ASTM D8045 0.57


.36


0.32


Contact/Location: MIKE METHER - GENBLA

OIL ANALYSIS REPORT

VISUAL		method	limit/base	current	history1	history2
White Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Yellow Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Precipitate	scalar	*Visual	NONE	NONE	NONE	NONE
Silt	scalar	*Visual	NONE	NONE	NONE	NONE
Debris	scalar	*Visual	NONE	NONE	LIGHT	NONE
Sand/Dirt	scalar	*Visual	NONE	NONE	NONE	NONE
Appearance	scalar	*Visual	NORML	NORML	NORML	NORML
Odor	scalar	*Visual	NORML	NORML	NORML	NORML
Emulsified Water	scalar	*Visual	>0.1	NEG	NEG	NEG
Free Water	scalar	*Visual		NEG	NEG	NEG
FLUID PROPERT	TES	method	limit/base	current	history1	history2
Visc @ 40°C	cSt	ASTM D445	68	AR 1	46.8	46.0

isc @ 40°C	cSt	ASTM D445	68	48.1	46.8	46.0
SAMPLE IMAGE	S					

Color **Bottom**

GRAPHS	
Ferrous Alloys	Particle Count
8- iron iron iron	122,880
E 6nickel	Severe 30.720 +22
	7,680 Abnormal +20 g
Sep28/21 Feb17/22 May25/22 Aug17/22 Jan31/23 Apr25/23 Jul14/23	7,680 Abnormal 20 7,680 Abnormal 1,920 1,
Non-ferrous Metals	16 G
8 copper	120
E 6tin	30
0	8 10
Sep28/21 Feb17/22 May25/22 Aug17/22 Jan31/23 Apr25/23 Jul14/23 Oct17/23	50000 2 8
Viscosity @ 40°C	4μ 6μ 14μ 21μ 38μ 71μ
Abnormal 70 - Base 9 60 - Abnormal	Abnormal 9.0.00 0.0.100
50	0.20 Abnormal
Sep28/21— Feb17/22— May25/22— Aug17/22— Jan31/23— Jul14/23— Oct17/23—	Aci (200724 + Feb20/24 + Feb17/22 - Aug17/22 - Jan31/23 + Apr25/23 - Jul14/23 - Oct17/23 + Feb20/24

P 0.20

Certificate 12367

Laboratory Sample No. : PTK0005473 Lab Number : 06148644 Unique Number : 10978722 Test Package : MOB 2

: WearCheck USA - 501 Madison Ave., Cary, NC 27513 Received : 15 Apr 2024 Tested : 16 Apr 2024

: 17 Apr 2024 - Don Baldridge Diagnosed

To discuss this sample report, contact Customer Service at 1-800-237-1369.

US 55449 Contact: MIKE METHER mmether@generalpattern.com T:

Contact/Location: MIKE METHER - GENBLA

GENERAL PATTERN

3075 84TH LN NE

BLAINE, MN

* - Denotes test methods that are outside of the ISO 17025 scope of accreditation. Statements of conformity to specifications are based on the simple acceptance decision rule (JCGM 106:2012)

Report Id: GENBLA [WUSCAR] 06148644 (Generated: 04/17/2024 14:29:19) Rev: 1

F: