

OIL ANALYSIS REPORT

Sample Rating Trend

ISO

Machine Id KAESER SX 6 2952002 (S/N 3286)

Component Compressor Fluid

KAESER SIGMA (OEM) M-460 (--- GAL)

DIAGNOSIS

Recommendation

No corrective action is recommended at this time. The filter change at the time of sampling has been noted. Resample at the next service interval to monitor.

Wear

All component wear rates are normal.

Contamination

There is a high amount of particulates present in the oil.

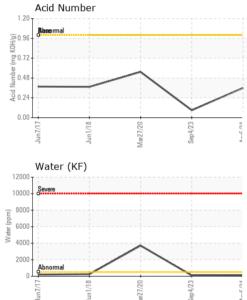
Fluid Condition

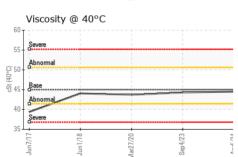
The AN level is acceptable for this fluid. The condition of the oil is suitable for further service.

SAMPLE INFORM	IATION	method	limit/base	current	history1	history2
Sample Number		Client Info		KCPA016071	KCPA004016	KCP24417
Sample Date		Client Info		05 Apr 2024	04 Sep 2023	27 Mar 2020
Machine Age	hrs	Client Info		44572	44532	42556
Oil Age	hrs	Client Info		0	0	16
Oil Changed		Client Info		Not Changd	N/A	Not Changd
Sample Status				ABNORMAL	ABNORMAL	ABNORMAL
WEAR METALS		method	limit/base	current	history1	history2
Iron	ppm	ASTM D5185m	>50	<1	4	8 0
Chromium	ppm	ASTM D5185m	>10	0	0	0
Nickel	ppm	ASTM D5185m	>3	0	4	<1
Titanium	ppm	ASTM D5185m		0	0	0
Silver	ppm	ASTM D5185m	>2	0	0	0
Aluminum		ASTM D5185m	>10	0	0	<1
Lead	ppm	ASTM D5185m	>10	0	0	<1
	ppm			-	-	
Copper	ppm	ASTM D5185m	>50	4	23	11
Tin	ppm	ASTM D5185m	>10	0	<1	0
Antimony	ppm	ASTM D5185m				<1
Vanadium	ppm	ASTM D5185m		<1	0	0
Cadmium	ppm	ASTM D5185m		0	0	0
ADDITIVES		method	limit/base	current	history1	history2
Boron	ppm	ASTM D5185m	0	0	0	1
Barium	ppm	ASTM D5185m	90	60	2	<1
Molybdenum	ppm	ASTM D5185m	0	0	0	0
Manganese	ppm	ASTM D5185m		<1	0	<1
Magnesium	ppm	ASTM D5185m	100	60	3	21
Calcium	ppm	ASTM D5185m	0	2	0	4
Phosphorus	ppm	ASTM D5185m	0	<1	4	1
Zinc	ppm	ASTM D5185m	0	2	7	14
Sulfur	ppm	ASTM D5185m	23500	19704	19551	21465
CONTAMINANTS		method	limit/base	current	history1	history2
Silicon	ppm	ASTM D5185m	>25	<1	<1	2
Sodium	ppm	ASTM D5185m		4	0	2
Potassium	ppm	ASTM D5185m	>20	<1	<1	<1
Water	%	ASTM D6304		0.012	0.008	▲ 0.371
ppm Water	ppm	ASTM D6304	>500	120	85.4	▲ 3710
FLUID CLEANLIN	ESS	method	limit/base	current	history1	history2
Particles >4µm		ASTM D7647		13354		
Particles >6µm		ASTM D7647	>1300	A 3697		
Particles >14µm		ASTM D7647		<u> </u>		
Particles >21µm		ASTM D7647		<u> </u>		
Particles >38µm		ASTM D7647	>4	3		
Particles >71µm		ASTM D7647		0		
Oil Cleanliness		ISO 4406 (c)	>/17/13	21/19/15		
FLUID DEGRADA		method	limit/base	current	history1	history2
Acid Number (AN)	mg KOH/g	ASTM D8045	1.0	0.36	0.09	0.554

Report Id: MCKNORMA [WUSCAR] 06151983 (Generated: 04/20/2024 09:55:08) Rev: 1

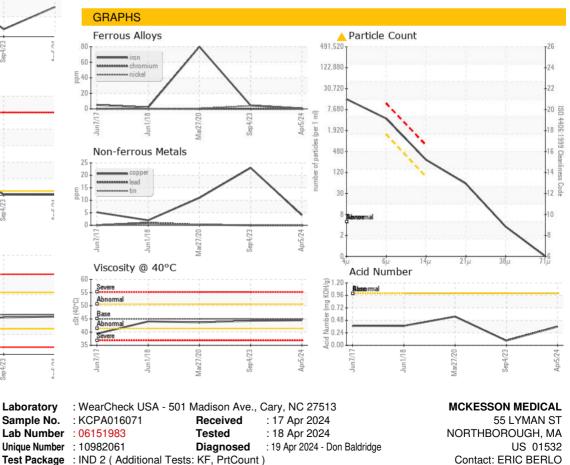
Contact/Location: ERIC BERLO - MCKNORMA

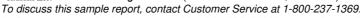



Built for a lifetime.

OIL ANALYSIS REPORT

	• 4μm • 6μm			
	-14μm			
- and	And and a second			
0k L1/Lun	Jun1/18	/20	Sep 4/23	Apr5/24
Jun	Junl	Mar27/2	Sep4	Apré
Water	(1.75)			





VISUAL		method	limit/base	current	history1	history2
White Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Yellow Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Precipitate	scalar	*Visual	NONE	NONE	NONE	NONE
Silt	scalar	*Visual	NONE	NONE	NONE	NONE
Debris	scalar	*Visual	NONE	LIGHT	🔺 MODER	NONE
Sand/Dirt	scalar	*Visual	NONE	NONE	NONE	NONE
Appearance	scalar	*Visual	NORML	NORML	NORML	- HAZY
Odor	scalar	*Visual	NORML	NORML	NORML	NORML
Emulsified Water	scalar	*Visual	>0.05	NEG	NEG	0.2%
Free Water	scalar	*Visual		NEG	NEG	5 .0
FLUID PROPERT	IES	method	limit/base	current	history1	history2
Visc @ 40°C	cSt	ASTM D445	45	44.5	44.3	43.7
SAMPLE IMAGES	S	method	limit/base	current	history1	history2
Color					a-	

Bottom

* - Denotes test methods that are outside of the ISO 17025 scope of accreditation.

Statements of conformity to specifications are based on the simple acceptance decision rule (JCGM 106:2012)

Certificate 12367

Contact/Location: ERIC BERLO - MCKNORMA

T:

F:

eric.berlo@mckesson.com