

OIL ANALYSIS REPORT

Sample Rating Trend

Building 12 Machine Id Roll Crusher 3

Component Southwest Bearing Fluid

MOBIL MOBILGEAR 600 XP ISO 68 (3 GAL)

DIAGNOSIS

Recommendation

Resample at the next service interval to monitor.

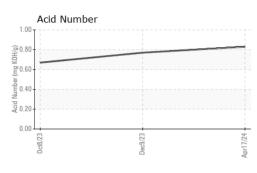
Wear

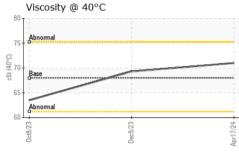
Area

All component wear rates are normal.

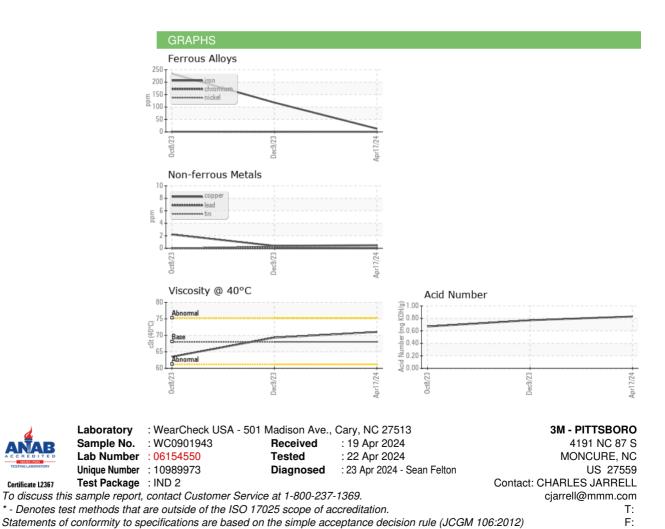
Contamination

There is no indication of any contamination in the oil.


Fluid Condition


The AN level is acceptable for this fluid. The condition of the oil is suitable for further service.

SAMPLE INFORM	MATION	method	limit/base	current	history1	history2
Sample Number		Client Info		WC0901943	WC0882551	WC0853782
Sample Date		Client Info		17 Apr 2024	09 Dec 2023	08 Oct 2023
Machine Age	hrs	Client Info		2170	2170	2170
Oil Age	hrs	Client Info		2170	224	450
Oil Changed		Client Info		Changed	N/A	Changed
Sample Status				NORMAL	SEVERE	SEVERE
CONTAMINATION	N	method	limit/base	current	history1	history2
Water		WC Method	>2	NEG	NEG	NEG
WEAR METALS		method	limit/base	current	history1	history2
Iron	ppm	ASTM D5185m	>20	13	1 18	a 234
Chromium	ppm	ASTM D5185m	>20	<1	<1	<1
Nickel	ppm	ASTM D5185m	>20	<1	1	1
Titanium	ppm	ASTM D5185m		<1	<1	5
Silver	ppm	ASTM D5185m		<1	<1	0
Aluminum	ppm	ASTM D5185m	>20	2	5	80
Lead	ppm	ASTM D5185m	>20	0	0	0
Copper	ppm	ASTM D5185m		<1	<1	2
Tin	ppm	ASTM D5185m	>20	<1	<1	0
Vanadium	ppm	ASTM D5185m		<1	0	<1
Cadmium	ppm	ASTM D5185m		<1	<1	0
ADDITIVES		method	limit/base	current	history1	history2
Boron	ppm	ASTM D5185m		33	27	21
Barium	ppm	ASTM D5185m		12	0	0
Molybdenum	ppm	ASTM D5185m		0	0	<1
Manganese	ppm	ASTM D5185m		0	2	3
Magnesium	ppm	ASTM D5185m		1	3	25
Calcium	ppm	ASTM D5185m		5	6	29
Phosphorus	ppm	ASTM D5185m		338	317	258
Zinc	ppm	ASTM D5185m		0	0	0
Sulfur	ppm	ASTM D5185m		8813	8405	6853
CONTAMINANTS		method	limit/base	current	history1	history2
Silicon	ppm	ASTM D5185m	>15	8	1 8	▲ 222
Sodium	ppm	ASTM D5185m		1	2	28
Potassium	ppm	ASTM D5185m	>20	2	2	4
FLUID DEGRADA	TION	method	limit/base	current	history1	history2
Acid Number (AN)	mg KOH/g	ASTM D8045		0.83	0.77	0.67



OIL ANALYSIS REPORT

VISUAL		method	limit/base	current	history1	history2
White Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Yellow Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Precipitate	scalar	*Visual	NONE	NONE	NONE	NONE
Silt	scalar	*Visual	NONE	NONE	🔺 MODER	A MODER
Debris	scalar	*Visual	NONE	LIGHT	NONE	NONE
Sand/Dirt	scalar	*Visual	NONE	NONE	NONE	NONE
Appearance	scalar	*Visual	NORML	NORML	NORML	NORML
Odor	scalar	*Visual	NORML	NORML	NORML	NORML
Emulsified Water	scalar	*Visual	>2	NEG	NEG	NEG
Free Water	scalar	*Visual		NEG	NEG	NEG
FLUID PROPERT	IES	method	limit/base	current	history1	history2
Visc @ 40°C	cSt	ASTM D445	68	71.0	69.3	63.5
SAMPLE IMAGES	S	method	limit/base	current	history1	history2
Color						

Submitted By: JORDAN TUTEN

Page 2 of 2