

OIL ANALYSIS REPORT

Area ZANI Machine Id NEGRI BOSSI 650 22 - ZANI (S/N 180-210)

Hydraulic System

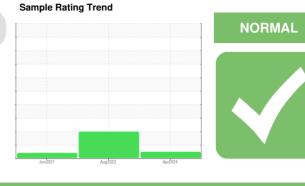
AW HYDRAULIC OIL ISO 46 (--- GAL)

DIAGNOSIS

Recommendation

Resample at the next service interval to monitor. NOTE: Please provide information regarding reservoir capacity, filter type and micron rating with next sample. Please specify the brand, type, and viscosity of the oil on your next sample.

Wear


All component wear rates are normal.

Contamination

The system cleanliness is acceptable for your target ISO 4406 cleanliness code. The system and fluid cleanliness is acceptable.

Fluid Condition

The AN level is acceptable for this fluid. The condition of the oil is suitable for further service.

SAMPLE INFORM	IATION	method	limit/base	current	history1	history2
Sample Number		Client Info		KFS0002839	KFS0002174	KFS0000450
Sample Date		Client Info		12 Apr 2024	18 Aug 2022	01 Jun 2021
Machine Age	hrs	Client Info		0	0	0
Oil Age	hrs	Client Info		0	0	0
Oil Changed		Client Info		N/A	N/A	N/A
Sample Status				NORMAL	ABNORMAL	ABNORMAL
CONTAMINATION	J	method	limit/base	current	history1	history2
Water		WC Method	>0.1	NEG	NEG	NEG
WEAR METALS		method	limit/base	current	history1	history2
Iron	ppm	ASTM D5185m	>20	4	6	7
Chromium	ppm	ASTM D5185m	>10	<1	0	<1
Nickel	ppm	ASTM D5185m	>10	<1	<1	<1
Titanium	ppm	ASTM D5185m		<1	0	0
Silver	ppm	ASTM D5185m		<1	0	<1
Aluminum	ppm	ASTM D5185m	>10	3	<1	1
Lead	ppm	ASTM D5185m	>10	<1	<1	<1
Copper	ppm	ASTM D5185m	>75	4	4	4
Tin	ppm	ASTM D5185m	>10	<1	<1	<1
Antimony	ppm	ASTM D5185m				0
Vanadium	ppm	ASTM D5185m		<1	0	0
Cadmium	ppm	ASTM D5185m		<1	0	0
ADDITIVES		method	limit/base	current	history1	history2
Boron	ppm	ASTM D5185m	5	0	0	1
Barium	ppm	ASTM D5185m	5	0	0	0
Molybdenum	ppm	ASTM D5185m	5	<1	<1	<1
Manganese	ppm	ASTM D5185m		<1	0	<1
Magnesium	ppm	ASTM D5185m	25	1	2	2
Calcium	ppm	ASTM D5185m	200	46	58	64
Phosphorus	ppm	ASTM D5185m	300	339	351	362
Zinc	ppm	ASTM D5185m	370	384	430	430
Sulfur	ppm	ASTM D5185m	2500	1397	1872	1768
CONTAMINANTS		method	limit/base	current	history1	history2
Silicon	ppm	ASTM D5185m	>20	1	<1	1
Sodium	ppm	ASTM D5185m		0	0	0
Potassium	ppm	ASTM D5185m	>20	2	<1	0
FLUID CLEANLIN	ESS	method	limit/base	current	history1	history2
Particles >4µm		ASTM D7647	>5000	1629	12626	
Particles >6µm		ASTM D7647	>1300	264	4 2570	
Particles >14µm		ASTM D7647	>160	19	1 75	
Particles >21µm		ASTM D7647	>40	5	5 8	
Particles >38µm		ASTM D7647	>10	0	1	
•						

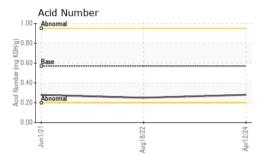
ASTM D7647 >3

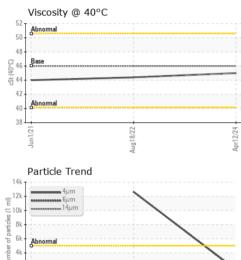
ISO 4406 (c) >19/17/14

0

18/15/11

Particles >71µm

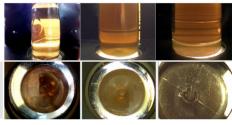

Oil Cleanliness


21/19/15

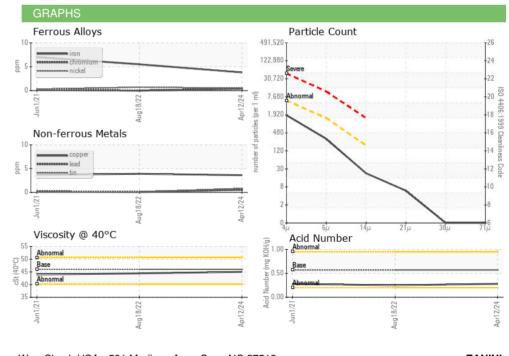
OIL ANALYSIS REPORT

Particle Trend		
The function of the second		
ok tiztun	Aug18/22	Apr12/24

Aug18/22


Abnorma

21


0k

FLUID DEGRADATION		method	limit/base	current	history1	history2
Acid Number (AN)	mg KOH/g	ASTM D8045	0.57	0.28	0.25	0.279
VISUAL		method	limit/base	current	history1	history2
White Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Yellow Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Precipitate	scalar	*Visual	NONE	NONE	NONE	NONE
Silt	scalar	*Visual	NONE	NONE	NONE	NONE
Debris	scalar	*Visual	NONE	NONE	NONE	🔺 MODER
Sand/Dirt	scalar	*Visual	NONE	NONE	NONE	NONE
Appearance	scalar	*Visual	NORML	NORML	NORML	NORML
Odor	scalar	*Visual	NORML	NORML	NORML	NORML
Emulsified Water	scalar	*Visual	>0.1	NEG	NEG	NEG
Free Water	scalar	*Visual		NEG	NEG	NEG
FLUID PROPERT	IES	method	limit/base	current	history1	history2
Visc @ 40°C	cSt	ASTM D445	46	45.0	44.4	44.0
SAMPLE IMAGES		method	limit/base	current	history1	history2

Color

Bottom

Laboratory : WearCheck USA - 501 Madison Ave., Cary, NC 27513 ZANINI Sample No. : KFS0002839 840 INDUSTRIAL DR Received : 22 Apr 2024 Lab Number : 06156885 Tested : 23 Apr 2024 WINCHESTER, TN Unique Number : 10992308 Diagnosed : 23 Apr 2024 - Wes Davis US 37398 Test Package : IND 2 Contact: TIM DOTY Certificate 12367 To discuss this sample report, contact Customer Service at 1-800-237-1369. tdoty@tn.zanini.com * - Denotes test methods that are outside of the ISO 17025 scope of accreditation. T: F:

Statements of conformity to specifications are based on the simple acceptance decision rule (JCGM 106:2012)

Report Id: ZANWIN [WUSCAR] 06156885 (Generated: 04/23/2024 17:34:37) Rev: 1

Submitted By: Jay Segadi

Page 2 of 2