

OIL ANALYSIS REPORT

Sample Rating Trend

NORMAL

Machine Id

KF-CV 1-PUMP 1 (S/N U161300130)

Component **Pump**

USPI VAC 100 (--- GAL)

IΑ			

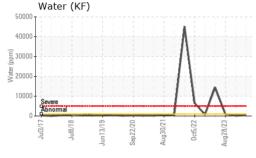
Recommendation

Resample at the next service interval to monitor.

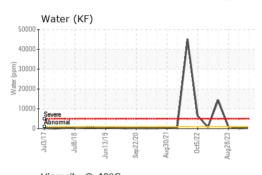
All component wear rates are normal.

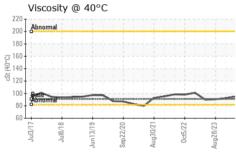
Contamination

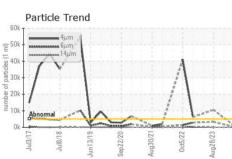
There is no indication of any contamination in the oil. The amount and size of particulates present in the system are acceptable.

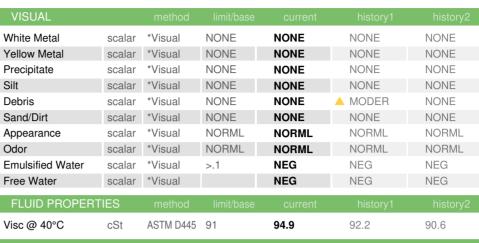

Fluid Condition

The AN level is acceptable for this fluid. The condition of the oil is suitable for further service.

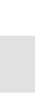

		ul2017 Jul	2018 Jun2019 Sep2	020 Aug2021 Oct2022 A	Jug2023	
SAMPLE INFORM	MATION	method	limit/base	current	history1	history2
Sample Number		Client Info		USPM36795	USPM31576	USPM27269
Sample Date		Client Info		23 Apr 2024	20 Dec 2023	28 Aug 2023
Machine Age	hrs	Client Info		0	0	0
Oil Age	hrs	Client Info		0	0	0
Oil Changed		Client Info		N/A	N/A	N/A
Sample Status				NORMAL	ABNORMAL	ABNORMAL
WEAR METALS		method	limit/base	current	history1	history2
Iron	ppm	ASTM D5185m	>90	26	20	23
Chromium	ppm	ASTM D5185m	>5	0	0	<1
Nickel	ppm	ASTM D5185m	>5	0	0	0
Titanium	ppm	ASTM D5185m	>3	0	0	<1
Silver	ppm	ASTM D5185m	>3	0	0	0
Aluminum	ppm	ASTM D5185m	>7	<1	<1	<1
Lead	ppm	ASTM D5185m	>12	0	0	<1
Copper	ppm	ASTM D5185m	>30	0	0	<1
Tin	ppm	ASTM D5185m	>9	0	<1	<1
Vanadium	ppm	ASTM D5185m		0	<1	<1
Cadmium	ppm	ASTM D5185m		0	0	<1
ADDITIVES		method	limit/base	current	history1	history2
Boron	ppm	ASTM D5185m	0	0	0	2
Barium	ppm	ASTM D5185m	0	0	0	0
Molybdenum	ppm	ASTM D5185m	0	0	0	0
Manganese	ppm	ASTM D5185m		0	0	<1
Magnesium	ppm	ASTM D5185m	0	0	0	6
Calcium	ppm	ASTM D5185m	0	2	2	0
Phosphorus	ppm	ASTM D5185m	1800	958	1038	904
Zinc	ppm	ASTM D5185m	0	<1	3	20
Sulfur	ppm	ASTM D5185m	0	7	20	26
CONTAMINANTS		method	limit/base	current	history1	history2
Silicon	ppm	ASTM D5185m	>60	4	4	4
Sodium	ppm	ASTM D5185m		2	2	5
Potassium	ppm	ASTM D5185m	>20	0	0	3
Water	%	ASTM D6304	>.1	0.031	0.016	0.096
ppm Water	ppm	ASTM D6304	>1000	318	163	966.9
FLUID CLEANLIN	ESS	method	limit/base	current	history1	history2
Particles >4µm		ASTM D7647	>5000	1149		△ 10549
Particles >6µm		ASTM D7647	>1300	291		▲ 3320
Particles >14µm		ASTM D7647	>160	21		148
Particles >21µm		ASTM D7647	>40	7		24
Particles >38µm		ASTM D7647	>10	1		3
Particles >71µm		ASTM D7647	>3	0		1
Oil Cleanliness		ISO 4406 (c)	>19/17/14	17/15/12		<u>\$\text{\Delta}\$ 21/19/14</u>
FLUID DEGRADA	TION	method	limit/base	current	history1	history2
Acid Number (AN)	mg KOH/g	ASTM D8045	0.05	0.77	0.65	1.59

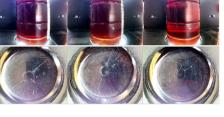


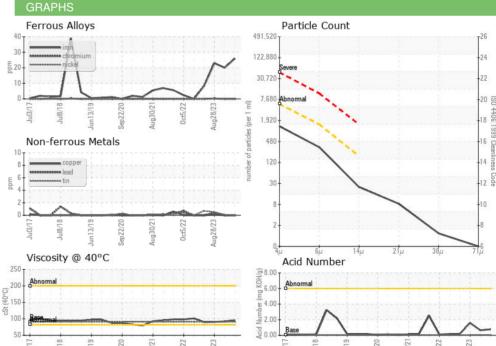

OIL ANALYSIS REPORT



Part	icle Tr	end				
	4μm	1				
50k - John Store of Particles (1 ml) 50k - John	14 <i>µ</i> žn				Ā	
30k					/	
ag 20k -		+			11	
Abno	mal	V			1	
0k 171/8	Jul8/18	3/19	2/20	0/21	5/22	8/23
Jul3/	Jul	Jun13/	Sep22/	Aug30	0ct5/2	Aug28/2






SAM	IDI E	-1 N Λ N C	םב
SAIV		IIVIAU	

Bottom

Color

Certificate 12367

Lab Number

Laboratory Sample No.

Test Package : IND 2

: USPM36795 : 06159148 Unique Number : 10994571

: WearCheck USA - 501 Madison Ave., Cary, NC 27513 Received

: 24 Apr 2024 **Tested** : 25 Apr 2024

Diagnosed : 26 Apr 2024 - Jonathan Hester TOLLESON, AZ US 85353 Contact:

JBS - TOLLESON

To discuss this sample report, contact Customer Service at 1-800-237-1369.

 st - Denotes test methods that are outside of the ISO 17025 scope of accreditation.

Statements of conformity to specifications are based on the simple acceptance decision rule (JCGM 106:2012)

T:

F: