

OIL ANALYSIS REPORT

Sample Rating Trend

NORMAL

Machine Id

VILTER 3 B (S/N 1066)

Component Refrigeration Compressor

ALL TEMP 717 (--- GAL)

	G١		

Recommendation

Resample at the next service interval to monitor.

Wear

All component wear rates are normal.

Contamination

There is no indication of any contamination in the oil. The amount and size of particulates present in the system are acceptable.

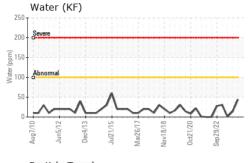
Fluid Condition

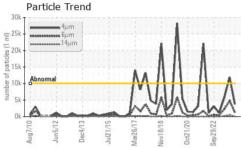
The AN level is acceptable for this fluid. The condition of the oil is suitable for further service.

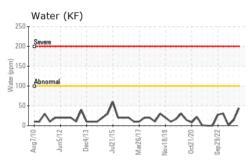
		g2010 Jun20	12 Dec2013 Jul2015	Mar2017 Nov2018 Oct2020 S	ep2022	
SAMPLE INFORM	MATION	method	limit/base	current	history1	history2
Sample Number		Client Info		USP0006560	USP0004659	USP0001830
Sample Date		Client Info		20 Apr 2024	02 Jan 2024	23 Sep 2023
Machine Age	hrs	Client Info		50858	49410	47912
Oil Age	hrs	Client Info		0	0	0
Oil Changed		Client Info		N/A	N/A	N/A
Sample Status				NORMAL	ATTENTION	NORMAL
WEAR METALS		method	limit/base	current	history1	history2
Iron	ppm	ASTM D5185m	>8	0	0	0
Chromium	ppm	ASTM D5185m	>2	<1	<1	0
Nickel	ppm	ASTM D5185m		<1	0	0
Titanium	ppm	ASTM D5185m		<1	0	0
Silver	ppm	ASTM D5185m	>2	0	0	0
Aluminum	ppm	ASTM D5185m	>3	0	1	<1
Lead	ppm	ASTM D5185m	>2	<1	0	0
Copper	ppm	ASTM D5185m	>8	<1	0	<1
Tin	ppm	ASTM D5185m	>4	<1	0	0
Vanadium	ppm	ASTM D5185m		<1	0	0
Cadmium	ppm	ASTM D5185m		<1	0	0
ADDITIVES		method	limit/base	current	history1	history2
Boron	ppm	ASTM D5185m		0	0	0
Barium	ppm	ASTM D5185m		0	0	0
Molybdenum	ppm	ASTM D5185m		<1	0	0
Manganese	ppm	ASTM D5185m		0	0	<1
Magnesium	ppm	ASTM D5185m		<1	0	0
Calcium	ppm	ASTM D5185m		0	<1	0
Phosphorus	ppm	ASTM D5185m		0	<1	0
Zinc	ppm	ASTM D5185m		0	0	0
Sulfur	ppm	ASTM D5185m		0	0	0
CONTAMINANTS		method	limit/base	current	history1	history2
Silicon	ppm	ASTM D5185m	>15	<1	0	<1
Sodium	ppm	ASTM D5185m		<1	0	<1
Potassium	ppm	ASTM D5185m	>20	0	1	0
Water	%	ASTM D6304	>0.01	0.004	0.001	0.001
ppm Water	ppm	ASTM D6304	>100	44	14	0.8
FLUID CLEANLIN	IESS	method	limit/base	current	history1	history2
Particles >4µm		ASTM D7647	>10000	3717	11902	5821
Particles >6µm		ASTM D7647	>2500	1159	4777	2324
Particles >14μm		ASTM D7647	>320	71	458	147
Particles >21µm		ASTM D7647	>80	13	94	23
Particles >38μm		ASTM D7647	>20	0	0	0
Particles >71μm		ASTM D7647	>4	0	0	0
Oil Cleanliness		ISO 4406 (c)	>20/18/15	19/17/13	21/19/16	20/18/14
FLUID DEGRADA	TION	method	limit/base	current	history1	history2
A at al. N.L. mada a.u. (ANI)	I/OII/-	ACTM DOZA		0.014	0.014	0.014

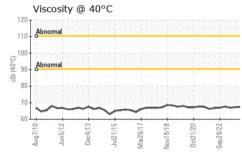
Acid Number (AN)

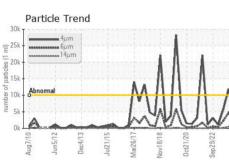
mg KOH/g ASTM D974


0.014


0.014


0.014




OIL ANALYSIS REPORT

VISUAL		method				history2
White Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Yellow Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Precipitate	scalar	*Visual	NONE	NONE	NONE	NONE
Silt	scalar	*Visual	NONE	NONE	NONE	NONE
Debris	scalar	*Visual	NONE	NONE	NONE	NONE
Sand/Dirt	scalar	*Visual	NONE	NONE	NONE	NONE
Appearance	scalar	*Visual	NORML	NORML	NORML	NORML
Odor	scalar	*Visual	NORML	NORML	NORML	NORML
Emulsified Water	scalar	*Visual	>0.01	NEG	NEG	NEG
Free Water	scalar	*Visual		NEG	NEG	NEG

FLUID PROPE	NIIEO	method		HISTORY	nistoryz
Visc @ 40°C	cSt	ASTM D445	67.4	67.4	66.9

SAMPLE IMAGES	method		

Color

	rous A	Alloys						Particle Count	
	in in the second							491,520	- T
	iro	romium						122,880 Severe	+
								30,720	
1	Λ.	1	1	~	~	\	1111111	Abnormal 7,680 4	
Aug7/10	Jun5/12	Dec4/13	Jul21/15	Mar26/17.	Nov18/18	Oct21/20	Sep29/22	Ē	
Aug	Jun	Dec	Jul	Mar	Nov1	0ct2	Sep2	1,920	
Nor	n-ferr	ous M	letals					1.920 ted (1.92) 480	
	C0	pper						120-	
	nananan lea	d						30	
	A	11/		A					
M	100	N		Δ	-		-	8	
Aug7/10	Jun5/12	Dec4/13	Jul21/15	Mar26/17	Nov18/18	Oct21/20	Sep29/22	2-	
				Ma	Nov	00	Sep	04 _µ 6 _µ 14 _µ 21 _µ	38µ 71
Viso	cosity	@ 40)°C					Acid Number	
Abno	ormal							\$0.02 1	
Abno	ormal						7 1 1 7 7 7	E 0.01	~~
-								g 0.01	
~	\sim		_	_	\perp			Acid Mumber (ng KOH/g) 20.01 10.01 2	
Aug7/10	Jun5/12	Dec4/13	Jul21/15	lar26/17	ov18/18	ct21/20	ep29/22	Aug7/10 Jun5/12 Dec4/13 -	oct21/20

Certificate 12367

Laboratory Sample No.

: USP0006560 Lab Number : 06159178 Unique Number : 10994601

: WearCheck USA - 501 Madison Ave., Cary, NC 27513 Received : 24 Apr 2024 **Tested** : 25 Apr 2024

Diagnosed : 26 Apr 2024 - Jonathan Hester

Test Package : IND 2 To discuss this sample report, contact Customer Service at 1-800-237-1369.

* - Denotes test methods that are outside of the ISO 17025 scope of accreditation. Statements of conformity to specifications are based on the simple acceptance decision rule (JCGM 106:2012)

Report Id: MILMILMO [WUSCAR] 06159178 (Generated: 04/26/2024 09:00:17) Rev: 1

Contact/Location: SERVICE MANAGER ? - MILMILMO

MILAN PROCESSING

Contact: SERVICE MANAGER

832 EAST 3RD ST

MILAN, MO

US 63556

T:

F: